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Abstract. This paper attempts to study the irreducibility on complete pre-
fix code (CPC-irreducibility) of a Markov shift over a free group, a topological
mixing property first considered for shift spaces over free semigroups that in-
duces chaotic behavior such as the existence of a dense set of periodic points.
An example shows that the (d, c)-reduction, an effective algorithm of determi-
nation of CPC-irreducibility of Markov shifts over free semigroups [5], fails for
general Markov shifts over free groups. This paper reveals an algorithm for
determining the CPC-irreducibility of Markov shifts over both free semigroups
and groups. Furthermore, such an examination is finitely checkable, and an
upper bound for the complexity of the algorithm is provided.

1. Introduction

Exhibition of chaotic behavior is one of the important properties for dynamical
systems. Phenomena such as strange attractor, period doubling, and period of re-
currence have drawn a lot of attention. Frequently used for the investigation of
chaotic systems, the study of the associated conjugate or seimconjugate symbolic
systems has turned out to be more and more important in the past decades. Shifts
of finite types (SFTs) on Nn (on Zn) is a space consisting of configurations (or color-
ings) which avoid a prescribed finite collection of patterns. While the investigation
into the graph representations of one-dimensional SFTs uncovers crucial properties
such as irreducibility, mixing, and the existence of periodic points, contrary results
have been obtained when dealing with multi-dimensional cases. For instance, the
emptiness problem is undecidable for two-dimensional SFTs; there is an aperiodic
SFT which has positive topological entropy, and there is a nonempty SFT which
exhibits nonextensible local patterns [6, 7, 8, 9, 10, 11, 14, 17, 18].

The differences between one- and multi-dimensional SFTs might come from the
structure of the underlying spaces; N (resp. Z) is a free group (resp. semigroup) with
one generator while Nn (resp. Zn), n ≥ 2, is an abelian group with n generators.
Aubrun and Béal introduced shift spaces over free semigroups, called tree shifts
[1, 2]. Tree SFTs (TSFTs) are more complicated than N-SFTs while still possess
a natural one-dimensional structure of symbolic dynamical systems equipped with
multiple shift maps. For instance, the emptiness problem is decidable, and the
local pattern is extensible if the adjacency matrices are essential [3]. Besides the
fundamental problems mentioned above, extensive investigations into topological
properties are contributed by researchers. Analogous to the classical result that
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conjugacy problem is decidable for mixing N-SFTs, it is also decidable for CPC-
irreducible TSFTs [1, 19]. Ban and Chang demonstrated that CPC-irreducible
TSFTs are chaotic in the sense of Devaney; that is, such a TSFT is transitive and
sensitive, and the CPC-periodic configurations are dense [4].

Since the irreducibility of N- and Z-SFTs is decidable and there is no algorithm
for multi-dimensional cases (cf. [13, 12]), it is natural to consider whether CPC-
irreducibility of SFTs over free semigroups and groups is decidable. Ban et al. [5]
introduced extended directed graph representation for TSFTs (i.e., SFTs over free
semigroup) and demonstrated the decidability of CPC-irreducible TSFTs. In the
same work, they also iteratively deduced a hom-TSFT for any TSFT, and ob-
tained the equivalence in irreducibility between the derived hom-TSFT and the
original TSFT. Furthermore, the properties mentioned are especially important in
the Markov hom-tree shifts [15, 16], in which the authors showed that the entropy
of TSFT can be approximated by the growth rate of number of patterns with any
given symbol if the adjacency matrix is irreducible, or equivalently, the TSFT is
CPC-irreducible.

This paper aims at the decidability of CPC-irreducible SFTs over free groups. As
the irreducibility of N- and Z-SFTs can be determined via the same argument, it is
reasonable that the extended directed graph representations for TSFTs (i.e., SFTs
over free semigroups) can be used to determine whether an SFT over free group
is CPC-irreducible, only a minor modification needed probably. Nevertheless, as
pointed out in the article, a novel methodology different from the discussion of TS-
FTs is required for the investigation of CPC-irreducibility of SFTs over free groups.
After extending the decidability of CPC-irreducibility in TSFTs with two genera-
tors to ones with an arbitrary number of generators (Theorem 3.1), Proposition 3.4
addresses an alternative statement of the (d, c)-reduction, the crucial technique for
the determination of CPC-irreducibility, that enriches the application. On the other
hand, we provide an example to show that the decidability of CPC-irreducibility
of SFTs over free groups cannot be seen as a problem in TSFTs (see Example 3.6).
As the main contribution of this paper, Theorem 3.7 provides an transformation
on the adjacency matrices of a 1-step SFT by which the CPC-irreducibility is pre-
served, and Theorem 3.8 addresses that the number of steps in the criterion only
depends on the cardinality of the alphabet. The two theorems above together yield
an upper bound of the complexity of the algorithm examining CPC-irreducibility
of an SFT over a free group.

2. Notation and Terminology

Let G be a finitely generated free semigroup with generating set Σ = {s1, s2, . . . , sk}
in which the identity element is included. Herein, the generating set Σ is assumed
to be symmetric, i.e., s ∈ Σ ⇔ s−1 ∈ Σ, whenever G is a group unless otherwise
specified. Each g ∈ G has a unique minimal representation (with respect to Σ)
g = s1s2 · · · sn such that si ∈ Σ, and that every substring sisi+1 · · · sj of g is not
equal to the identity ϵ. Denote by |g| = n the length of the word g. Define the set
Σn := {g ∈ G : |g| = n}. In particular, Σ0 = {ϵ} and Σ1 = Σ.

A subset P ⊂ G is called a prefix set if none of the word in P is a prefix of one
another. A complete prefix code is a finite prefix set P such that if a word w ∈ G
satisfies |w| ≥ maxz∈P |z|, then there exists a prefix w′ of w lying in P . In particular,
Σn is a complete prefix code for every n ∈ N. Define the set ∆n := ∪n≤i≤0Σ

i. A
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set L ⊆ G is called prefix-closed if every prefix of L lies in L. The boundary ∂L of L
is the set {g ∈ L : gΣ ∩ Lc ̸= ∅}. In particular, ∆n is prefix-closed and ∂∆n = Σn.

Let A be a finite labeling set. A configuration is a function x : G → A. For each
g ∈ G, denote by xg = x(g) the label attached to x at g. The shift transformation
σ : G×AG → AG is defined as σ(w, x)g = (σwx)g = xwg for all w, g ∈ G. A block
(or more specifically, an n-block) is a function u : ∆n → A. A pattern is a function
u : L → A for some finite prefix-closed set L ⊂ G, and the support s(u) of u is the
set L.

A G-shift X ⊆ AG is the set of all configurations that avoid a certain set of blocks
F , written as X = XF . A G-shift of finite type (G-SFT) is a G-shift X = XF with
F a finite set. For simplicity, we also refer to G-shift as tree-shift and to G-SFT as
tree-SFT (TSFT) if G is a strict semigroup, i.e., G is a semigroup but not a group.
A block u is said to be admissible in X if there exists x ∈ X and w ∈ G such that
(σwx)|s(u) = u; otherwise, it is forbidden. An admissible pattern is defined in the
similar way. The set of all admissible n-blocks is denoted by Bn(X) and the set
of all admissible blocks is denoted by B(X). Note that a G-SFT X = XF with
F ⊆ A∆n can also be defined by its admissible n-blocks, for which we call such
shifts the n-step G-SFT. In the following passage, a pattern or a configuration u is
seen as a subset of G×A. That is, if g ∈ G and α ∈ A. Then, ug = α if and only
if (g, α) ∈ u.

A tree-shift X is said to be irreducible on complete prefix code (CPC-irreducible)
if for any admissible blocks u, v, there exist an x ∈ X and a collection of complete
prefix codes {Pg}g∈∂s(u) such that x|s(u) = u and (σgwx)|s(v) = v for each g ∈
∂s(u), w ∈ Pg. This definition could be understood as a version of topological
transitivity for tree-shifts in the sense that a one-sided shift space X ⊂ AZ+ , i.e.
a degenerate tree-shift with Σ = {s1}, is topologically transitive if and only if it
is CPC-irreducible. More precisely, if any u ∈ Bn(X) ⊂ An+1 and v ∈ Bm(X) ⊂
Am+1 altogether admit a configuration x ∈ X and an integer N such that x[0,n] = u
and x[n+N,n+N+m] = v, it can be rephrased in terms of CPC-irreducibility by
noting that s(u) = [0, n], that s(v) = [0,m], that ∂s(u) = {n}, and that Pn =
{N}. On the other hand, since CPC-irreducibility, like topological transitivity, is a
conjugacy invariant for tree-shifts (which follows immediately from definition), the
discussions regarding the property can be reduced to the class of 1-step TSFTs. In
fact, for 1-step TSFTs over infinite binary trees, CPC-irreducibility is shown to be
characterized by the associated extended directed graph in [5], which is naturally
generalized to the following definition.

Definition 2.1 (extended directed graph). Let k ∈ N be given. An extended
directed graph is an ordered triplet G = (V,Ec, Ed) defined as follows:

(1) V is called the vertex set. The divergent-edge set Ed ⊆ V k+1 consists of
(a, b1, b2, · · · , bk) with non-identical bi ∈ A. Denote (a, b1, b2, · · · , bk) ∈ Ed

as a → (b1, b2, · · · , bk) ∈ Ed.
(2) The convergent-edge set Ec ⊆ V × V consists of (a, b) ∈ Ec, which is also

denoted as a → (b, · · · , b) ∈ Ec for consistency.
The ordered pair of extended directed graph G, (V,Ec) is a directed graph, called
the intrinsic graph of G and denoted by Gc.

The definition above actually mimics the classical graph representation of a 1-step
shift of finite type, and indeed induces a 1-step TSFT whose forbidden set consists of
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all 1-blocks a → (b1, b2, · · · , bk) ∈ A∆1 which does not lie in Ec ∪Ed. Nevertheless,
such a graph representation may not be unique for a 1-step TSFT, and thus we in
this article consider only its “simpplest” graph representation, which is defined as
follows.

Definition 2.2. Let X be a 1-step TSFT with the set of admissible 1-blocks
B ⊆ A∆1 , and G = (V,Ec, Ed) be an extended directed graph. G is said to be an
extended graph representation of X if G is defined in the following manner:

(1) V = A
(2) Ec = {(a, b) ∈ A×A : a → (b, b, · · · , b) ∈ B}
(3) Ed = {(a, b1, · · · , bk) ∈ Ak+1 : bi ∈ A are not identical , a → (b1, · · · , bk) ∈

B}

Suppose X is a 1-step TSFT and G is the extended graph representation of
X. The CPC-irreducibility of X is closely related to the connectivity of G. More
specifically, it is shown in Section 3 that the ultimate intrinsic graph derived through
any of the following reduction processes is strongly connected if and only if X is
CPC-irreducible.

Definition 2.3 ((d, c)-reduction). Let G = (V,Ec, Ed) be an extended directed
graph. Suppose c := (a, bj) /∈ Ec and d := a → (b1, b2, · · · , bk) ∈ Ed such that for
every bi ̸= bj there exist a path in Gc, biβ1β2 . . . βkbj . Denote H := (V,Ec∪{c}, Ed).
Here, G is called (d, c)-reducible, and H is called a (d, c)-reduction of G, denoted
G ⪯ H. If G ⪯ G1 ⪯ G2 . . . ⪯ GN and GN is not (d, c)-reducible, then GN is called
the full reduction of G and is denoted as G.

The spirit behind the above reduction process is to simplify the extended directed
graph of X while preserving the CPC-irreducibility at the same time. For this
purpose, we can also adopt the following alternative reduction process, in which
the full reduction coincides with its intrinsic graph if X is CPC-irreducible.

Definition 2.4 (enhanced (d, c)-reduction). Let G = (V,Ec, Ed) be an extended
directed graph. Suppose c := (a, bj) /∈ Ec and d := a → (b1, b2, · · · , bk) ∈ Ed

such that for every bi ̸= bj there exists a path in Gc, biβ1β2 . . . βkbj . Denote
H := (V,Ec ∪ {c}, Ed \ {d}). Then, G is called enhanced (d, c)-reducible and H is
called an enhanced (d, c)-reduction of G.

Besides the two reduction processes above, the grouping reduction in the follow-
ing definition exploits the connected components in the intrinsic graph for the same
task of determination of CPC-irreducibility. Even though it yields the same results
as above, it is this process that exclusively provides an overview of the extended
directed graph in terms of the connected components.

Definition 2.5 (grouping reduction). Let G = (V,Ec, Ed) be an extended directed
graph, V = V1 ∪ V2 ∪ . . . VN such that Gc|Vi

is a strongly connected component
and that Gc|∪N1

ℓ=1Viℓ

is not strongly connected for N1 > 1 and Viℓ all distinct. The
grouping reduction of G, H = (Ṽ , Ẽc, Ẽd), is defined as follows:

(1) Ṽ = {V1, . . . , VN}
(2) Ẽc = {(Vi, Vj) : ∃a ∈ Vi, bjn ∈ Vj , α → (bj1 , bj2 , · · · , bjk) ∈ Ec ∪ Ed}
(3) Ẽd = {(Vi, Vj1 , · · · , Vjk) : ∃jℓ ̸= j1,∃a ∈ Vi, bjn ∈ Vjn , a → (bj1 , · · · , bjk) ∈ Ed}
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Figure 1. The illustration of the (d, c)-reduction, enhanced (d, c)-
reduction, and grouping reduction of extended directed graph for
k = 2.

Example 2.6. Definition 2.3, 2.4, and 2.5 are illustrated in Figure 1. In the left
column of the figure, the divergent edge d colored in cyan and the convergent edge
c colored in red altogether induce the blue convergent edge (and the green vertex
as well in the case of grouping reduction) in the corresponding figure in the right
column.

3. Decidability of CPC-Irreducibility

3.1. Decidability of CPC-Irreducibility of 1-step TSFTs. The following pas-
sage is devoted to the demonstration of the equivalence of CPC-irreducibility and
the strong connectedness of the intrinsic graph of a full reduction through the
reduction processes. We first consider the (d, c)-reduction and the enhanced (d, c)-
reduction. Let X be a 1-step TSFT with B = B1(X) ⊂ A∆1 the set of admissible
1-blcok. Suppose u := a → (b1, b2, · · · , bk) ∈ B such that b1, b2, . . . , bk are not
identical, and that there exist 1 ≤ i ̸= j ≤ k, x ∈ X and a CPC P such that
xϵ = bi, xg = bj for all g ∈ P . Let v := a → (b1, b2, · · · , bi−1, bj , bi+1, · · · , bk),
B′ := (B \ {u})∪{v}, B′′ := B ∪{v}, Y is induced by B′, and Z is induced by B′′.
This means, intuitively speaking, if there exists a pattern with bi at its root and
bj on all its boundary, then we may add/replace by the shortcut bi → (bj , · · · , bj)
while having CPC-irreducibility preserved. Indeed, the following theorem shows
that the CPC-irreducibility is preserved under the (d, c)-reduction or the enhanced
(d, c)-reduction.

Theorem 3.1. Let X be a 1-step TSFT induced by some admissible set B ⊆ A∆1 ,
and Y and Z are derived through the enhanced (d, c)-reduction and the (d, c)-
reduction, respectively, as above. Then, X is CPC-irreducible if and only if Y
is CPC-irreducible. Similarly, X is CPC-irreducible if and only if Z is CPC-
irreducible.
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0

1 0

1 0 0 1

0 0 0 0

admissible pattern in X

0

1 0

1 0 0 1

0 0 0 0 0 0 0 0

replace

admissible pattern in Y

Figure 2. Illustration of the proof of the necessity
of Theorem 3.1.

Proof. The proof is similar to [5, Theorem 4.4]. A sketch of proof is given as follows
for the compactness and self-containedness of this paper. To begin with, note that
we may assume without loss of generality the pattern u does not appear in x|R if
we denote by R the minimal prefix-closed set containing P with ∂R = P .

To prove the necessity, we show that given α, β ∈ A there exist y ∈ Y and a
complete prefix code PY such that yϵ = α and yg = β for all g ∈ PY . The proof of
the existence of y is based on the existence of x ∈ X and a complete prefix code PX

such that xϵ = α and xg = β for all g ∈ PX , which follows immediately from the
the fact X is irreducible. The desired y is derived by recursively replacing every
appearance of u in x by v. More specifically, if the yellow block in Figure 2 denotes
u in which the blue node denotes bj and green node denotes bi, then by replacing
all the nodes below the green node by the green blocks, u is replaced by v, the pink
block, and is an admissible pattern by Y . The proof for Z is similar.

We now prove the sufficiency by showing that given α, β ∈ A there exist z ∈ X
and a complete prefix code PX such that zϵ = α and zg = β for all g ∈ PX , for
which an illustration is provided in Figure 3. Following the existence of a y ∈ Y
and a complete prefix code PY such that yϵ = α and yg = β for all g ∈ PY , and z
is obtained by recursively replacing every appearance of u (pink block) in z by v
(yellow block) followed by x|R (cyan block). This finishes the proof. □

The following lemma, which unveils an “extended” meaning of (d, c)-reduction,
addresses that the reduction applies to irreducible components of the corresponding
graph. The proof is obtained routinely via analogous discussion of [5, Lemma 6.3],
thus it is omitted.

Lemma 3.2. Let X be a CPC-irreducible TSFT induced by some admissible set
B ⊆ A∆1 . Suppose G is the extended directed graph representation of X. Let
V = V1 ∪ V2 ∪ . . . ∪ VN with N ≥ 2, upon which strongly connected component
decomposition is defined, then,

(1) for each Vi, there exists b1, · · · , bk ∈ Vi, a ∈ Vj (i ̸= j) such that a →
(b1, · · · , bk) ∈ Ec ∪ Ed. Denote Vj

a−−−−−−→
(b1,··· ,bk)

Vi.

(2) there exist distinct Vi1 , · · · , ViM , where 1 ≤ i1 ≤ · · · ≤ iM ≤ N , and
aij , bij ,k ∈ Vij such that

Vi1

ai1−−−−−−−−−−−→
(biM ,1,··· ,biM ,n)

ViM

aiM−−−−−−−−−−−−−−→
(biM−1,1,··· ,biM−1,n)

· · ·
ai3−−−−−−−−−→

(bi2,1,··· ,bi2,1)
Vi2

ai2−−−−−−−−−→
(bi1,1,··· ,bi1,1)

Vi1
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0

1 0

1 0 0 1

admissible pattern in X with given initial and boundary symbol

0

1 0

1 0 0 1

0 0 0 0 0 0 0 0

admissible pattern in Y

0

1 0

1 0 0 1

0 0 0 0 0 0 0 0

0 0

0 0 0 0

replace

admissible pattern in X

Figure 3. Illustration of the proof of the sufficiency
of Theorem 3.1

Note that there exists at least one divergent edge among the edges given
above.

The following theorem comes immediately from Theorem 3.1 and Lemma 3.2.

Theorem 3.3. Let X be a 1-step TSFT and G be its extended directed graph
representation. Then, X is CPC-irreducible if and only if the grouping reduction
of G is strongly connected.

The sketch of the proof, by utilizing the (d, c)-reduction, is described as in the
following steps and illustrated in Figure 4:

(1) For every G-SFT, X, an extended directed graph G can be defined, which
is provided in Figure 4 Step 1. Denote X0 = X.

(2) The intrinsic graph of the extended directed graph defined above can be
decomposed into strongly connected components by Lemma 3.2, which are
indicated by circles in Figure 4 Step 2.

(3) By applying Theorem 3.1 and Lemma 3.2, any CPC-irreducible Xi, either
Gi has strongly connected intrinsic graph Gc

i , or Gi is (d, c)-reducible (or
enhanced (d, c)-reducible) with the (d, c)-reduction Gi+1 inducing a CPC-
irreducible 1-step TSFT Xi+1. In Figure 1, the divergent edge colored in
cyan has both its destination in the same component and thus a convergent
edge colored in blue is induced.

(4) As a result, if Gi is not (d, c)-reducible (or enhanced (d, c)-reducible), then
Gc
i is strongly connected if and only if Xi is CPC-irreducible. By Theorem

3.1, this is also equivalent to the CPC-irreducibility of X.
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(b) Step 2

0
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0

(c) Step 3

Figure 4. Outline of the proof of Theorem 3.3.

Based on Lemma 3.2, we consider the following alternative reduction process
to the ones mentioned in Section 2, which relaxes the requirement in the (d, c)-
reduction.

Proposition 3.4. Suppose X is a TSFT induced by admissible 1-blocks B, and
a → (b1, b2, · · · bi−1, bi, bi+1 · · · , bk), bi → (c, · · · , c) ∈ B. Let Y be the TSFT
induced by admissible set B ∪{a → (b1, · · · bi−1, c, bi+1, · · · , bk)}. Then, X is CPC-
irreducible if and only if Y is CPC-irreducible.

Proof. The necessity is clear. The sufficiency can be proved using the same tech-
niques as in Theorem 3.1 and as Figure 3. Suppose the cyan 1-block in the figure
corresponds to bi → (c, · · · , c), and a → (b1, b2, · · · bi−1, bi, bi+1 · · · , bk) corresponds
to the yellow block. Under the assumption of CPC-irreducibility, for every d ∈ A,
there exist an x ∈ X and a complete prefix code P such that xϵ = c and xg = d
for each g ∈ P . Thus, given any pattern in Y , we can replace every appearance of
pink block by the yellow block so that the pattern after replacement is a pattern
in X and the CPC-irreducibility is maintained during the process. □

It is not hard to verify that the above reduction process is capable of determining
the CPC-irreducibility of X. To be more precise, X is CPC-irreducible if and only
if the intrinsic graph of the full reduction of the corresponding graph representation
G is strongly connected, and an example is given as follows.

Example 3.5. Suppose X is a 1-step TSFT with the extended directed graph
G = (V,Ec, Ed) defined as follows:

V = {1, 2, 3, 4},
Ec = {2 → (4, 4), 4 → (3, 3), 3 → (2, 2)},
Ed = {1 → (2, 3)}.
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Then, with respect to the path 243 consisting of convergent edges, the (d, c)-
reduction G′ = (V ′, E′

c, E
′
d) of G is defined as

V ′ = {1, 2, 3, 4},
E′

c = {2 → (4, 4), 4 → (3, 3), 3 → (2, 2), 1 → (3, 3)},
E′

d = {1 → (2, 3)},

and the enhanced (d, c)-reduction G′′ = (V ′′, E′′
c , E

′′
d ) of G is defined as

V ′′ = {1, 2, 3, 4},
E′′

c = {2 → (4, 4), 4 → (3, 3), 3 → (2, 2), 1 → (3, 3)},
E′′

d = ∅.

On the other hand, with respect to the convergent edges (2, 4) ∈ Ec and (4, 3) ∈ Ec,
the reduced graph representation G′′′ = (V ′′′, E′′′

c , E′′′
d ) following Proposition 3.4 is

given as

V ′′′ = {1, 2, 3, 4},
E′′′

c = {2 → (4, 4), 4 → (3, 3), 3 → (2, 2), 1 → (3, 3)},
E′′′

d = {1 → (2, 3), 1 → (4, 3)}.

It is seen from the reduced graph representations above that X is not CPC-
irreducible.

3.2. Decidability of CPC-Irreducibility of 1-step G-SFTs. Suppose G is a
free group of k generators. Then, G has the Cayley graph as shown in Figure 5.
Graphically, this Cayley graph is almost the same as that of the free semigroup
described above, except the degree of the identity element is the same as that of
any of the rest element in G. Therefore, the generalization of CPC-irreducibility to
G-shifts is natural. A 1-step G-SFT X is said to be irreducible on complete prefix
code (CPC-irreducible) if for any two symbols a, b ∈ A, there exist an x ∈ X and
a complete prefix code P such that xϵ = a and xg = b for each g ∈ P . Suppose u
is a pattern with ∂s(u) = P , then u is said to connect a and b in the CPC sense.
Even though the discussions of the above definition can be generalized to G with
an arbitrary number k of generators, in this paper we focus on the case k = 2 for
simplicity.

Despite the fact the definition of CPC-irreducibility seems natural and the struc-
ture of the free group and the free semigroup are similar, they exhibit very different
behavior on the CPC-irreducibility. In fact, the reason why we restrict the defi-
nition to the case of 0-blocks (namely, symbols) is that if we replace a, b in the
definition by the patterns u, v and P by {Pg}g∈s(u) as that for TSFTs, then hardly
is any G-SFT X irreducible in this sense due to the possible overlaps of ghs(v)
and gh′s(v) for h, h′ ∈ Pg, even in some very naive cases such as the higher block
representations of full shifts. Hence, it is not even a topological invariant. The
following example exhibits the decidability of CPC-irreducibility of SFTs over free
groups cannot be seen as a problem in TSFT. In other words, the theorems derived
for 1-step TSFTs are not applicable to 1-step G-SFTs.

Example 3.6. Let G be a free group with two generators, and X be a 1-step
G-SFT defined by the following adjacency matrices:
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Figure 5. Cayley graph for free group with 2 generators {s1, s2}
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Figure 6. Admissible pattern in X of Example 3.6.

A1 =


0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

 , A2 =


0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 1 0 0

 .

That is, x ∈ X if and only if for all g ∈ G,

(A1)xg,xgs1
= (A1)x

gs
−1
1

,xg = (A2)xg,xgs2
= (A2)x

gs
−1
2

,xg .

Even though one may also define an extended directed graph for X with its edge
set consisting of B1(X), the (d, c)-reduction process no longer preserves CPC-
irreducibility as in TSFTs. Indeed, X is CPC-irreducible since the patterns of
the form in Figure 6 is admissible for every letter i. Nevertheless, neither the in-
trinsic graph is strongly connected, nor the extended directed graph itself is (d, c)-
reducible. In particular, the set of convergent edges is empty in this case.

Despite the ineffectiveness of the extended directed graph, the CPC-irreducibility
is decidable in general, which is proved in the following theorems.
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Theorem 3.7. Suppose X is a 1-step G-SFT (resp. TSFT) induced by A1, A2 and
Y is a 1-step G-SFT (resp. TSFT) induced by B1, B2 with

(Bℓ)i,j =

{
1 if i = j

(Aℓ)i,j if i ̸= j

for ℓ = 1, 2. Then, X is CPC-irreducible if and only if Y is CPC-irreducible.

Proof. We prove the case of 1-step G-SFTs, and the case of 1-step TSFTs is similar.
The necessity is clear. The converse holds from the following iterative replace-

ment argument. Suppose v0 = v is a pattern in Y such that v connects a and
b in the CPC sense, i.e., ∂s(u) is a CPC, vϵ = a and vw = b for all w ∈ s(u).
Consider the set S(v0) := {w ∈ s(u) : ∃z ∈ Σ, c ∈ A, (v0)w = (v0)wz = i, (Aℓ)i,i =
0, (Bℓ)i,i = 1 for some ℓ}. Pick any w0 ∈ S(v0), z0 ∈ Σ satisfy the requirement of
S(v0) and define the pattern v1 as

(v1)w :=

{
(v0)w, if w0 is not a prefix of w;
(v0)w0z, if w = w0z0z.

It is clear that v1 is a pattern in Y that connects a and b in the CPC sense. Also,
|S(v1)| = |S(v0)|−1. Hence, by repeating the process for |S(v0)| times, we derive a
pattern v|S(v0)| in Y that connects a and b in the CPC sense with

∣∣S(v|S(v0)|)
∣∣ = 0.

It proves that v|S(v0)| is also a pattern in X. □

In fact, we prove can prove a bit more in the following theorem.

Theorem 3.8. Suppose X is a 1-step G-SFT induced by A1, A2, a ∈ A, and
B1,B1 ⊂ A. Then, if there exists a pattern v with s(v) a such that vϵ ∈ B1 and
vg ∈ B2 for all g ∈ ∂s(v), then there exists a pattern u with s(u) a CPC such that
uϵ ∈ B1 and ug ∈ B2 for all g ∈ ∂s(u) that such that maxw∈s(u) |w| ≤ 2 |A|.

Proof. Suppose w = w0w1w2 · · ·wn ∈ G with w0 = ϵ. Denote w[i] = w0w1 · · ·wi in
the rest of the proof. Let B1,B1 ⊆ A be as stated. We then derive a (probably not
unique) desired u from v by an iterative replacement.

Let u0 = v. Now if maxw∈s(ui) |w| ≤ 2 |A|, then the theorem is automatic.
Otherwise, we may pick w ∈ ∂s(ui) such that |w| = maxw′∈s(ui) |w′| and that there
exist some distinct 0 < n1, n2, n3 ≤ |w| such that uw[n1] = uw[n2] = uw[n3] , as is
given in the following graph.

· · · c

w′′
n1+1

· · · c

w′′
n2+1

· · · c

w′′
n3+1

· · ·
wn3+1

w′
n3+1

wn3
wn2+1

w′
n2+1

wn2wn1+1

w′
n1+1

wn1

Under the circumstances, we define an admissible pattern ui+1 with its support a
CPC such that |s(ui+1)| < |s(ui)| such that (ui+1)ϵ ∈ B1 and that (ui+1)g ∈ B2 for
all g ∈ ∂s(ui+1). To this end, we consider the following two cases:
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1. If any two of wn1
, wn2

, wn3
are equal, say wn1

= wn2
holds, then so do

wn1+1 = wn2+1, w′
n1+1 = w′

n2+1 and w′′
n1+1 = w′′

n2+1. Define the pattern ui+1 as

(ui+1)z :=

{
(ui)z if w[n1] is not a prefix of z
(ui)wz′′ if z = w[n1]z′′ and w[n2]z′′ ∈ s(ui)

From the definition it is clear that |s(ui+1)| < |s(ui)| is a CPC.
2. If wn1 , wn2 , wn3 are all distinct, then

{wn2+1, w
′
n2+1, w

′′
n2+1, wn3+1, w

′
n3+1, w

′′
n3+1} = Σ.

Hence, without loss of generality, we may assume wn1+1 = w′
n2+1. Define the

pattern ui+1 as

(ui+1)z :=

{
(ui)z if w[n1+1] is not a prefix of z
(ui)wz′′ if z = w[n1+1]z′′ and w[n2]w′

n2
z′′ ∈ s(ui)

From the definition it is clear that |s(ui+1)| < |s(ui)| is a CPC.
The above process can be proceeded unless no such w ∈ G exists. In particular,

this process terminates after a finite times, say N times, since s(u0) is a finite set.
By definition, uN is a pattern with its support a CPC such that uϵ = a and that
ug ∈ B for all g ∈ ∂s(uN ). On the other hand, we observe that for each w ∈ ∂s(uN )
with |w| = n, every symbol appears in u|{w[k]}n≥k≥0

at most twice, probably except
(uN )ϵ = a for at most three times. Therefore, maxw∈s(uN ) |w| ≤ 2 |A|. The proof
is completed by letting u = uN . □

In particular, Theorem 3.8 gives an upper bound for size of the pattern required in
the definition of CPC-irreducibility if we take B1 := {a} and B := {b}. Moreover,
for CPC-irreducibility on N -step G-SFT X, one can consider its N -block represen-
tation Y ⊂ BN (X)G so that Y is a 1-step G-SFT induced by some matrices A1

and A2. We apply the theorem again to give a similar upper bound, and hence
such CPC-irreducibility is decidable in general, even though it is not a topological
invariant. To be more precise in this setting, X is CPC-irreducible if and only if for
any a, b ∈ A, there exists a pattern u in Y with s(u) a CPC such that uϵ ∈ B1, that
ug ∈ B2, and that maxw∈s(u) |w| ≤ |BN (X)|, where B1 := {v ∈ BN (X) : vϵ = a}
and B1 := {v ∈ BN (X) : vϵ = b}. For the demonstration of Theorem 3.8, we
provide an example defined as follows.

Example 3.9. Let X be an SFT induced by matrices

A1 =

0 1 0
0 0 1
1 0 0

 and A2 =

0 1 0
1 0 1
0 1 0

 ,

for which all admissible 1-blocks are provided in Figure 7. Under this definition, X
is not a CPC-irreducible SFT. In particular, b and c are not connected in the CPC
sense since the recurrence of the pattern a

s−1
1−−→ b asserts the CPC connectivity

is impossible due to the argument in Theroem 3.8 (see Figure 8). Note that the
maximal length of the pattern provided in this figure is 3 ≤ 2 |A| = 6 and is
consistent with Theorem 3.8.

Remark 3.10. By Theorem 3.7 and Theorem 3.8, the brute force algorithm
for checking whether i, i + 1 can be connected in the CPC sense needs at most
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a
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s1 s2 s−1
1 s−1

2

b

c a a a

s1 s2 s−1
1 s−1

2

b

c a a c

s1 s2 s−1
1 s−1

2

b

c c a a

s1 s2 s−1
1 s−1

2

b

c c a c

s1 s2 s−1
1 s−1

2
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a b b b

s1 s2 s−1
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Figure 7. Rules of the SFT induced by A1, A2.

b

c c a c

b c b

c c a

s1 s2 s−1
1 s−1

2

s2 s−1
1 s−1

2

s1 s2 s−1
1

Figure 8. Occurrence of repeated patterns during the search of
CPC connectivity.

|A|2
2|A|+1−1 steps. Therefore, the complexity of the brute force algorithm for check-

ing CPC irreducibility is bounded by |A| · |A|2
2|A|+1−1

= |A|2
2|A|+1

.

4. Discussion and Conclusion

This paper generalizes the extended graph to tree-SFTs with arbitrary number
of generators. In addition, the paper also provides a brief investigation into the
decidability of CPC-irreducibility on 1-step G-SFTs induced by adjacency matrices,
where G is a free group. However, this problem is far from being solved, and the
core problem listed as follows is left open.

• Is there an interpretation of CPC-irreducibility for G-SFTs in terms of the
graph representation?
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