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Abstract. We reveal an algorithm for determining the complete prefix
code irreducibility (CPC-irreducibility) of dyadic trees labeled by a finite
alphabet. By introducing an extended directed graph representation of
tree shift of finite type (TSFT), we show that the CPC-irreducibility of
TSFTs is related to the connectivity of its graph representation, which
is a similar result to one-dimensional shifts of finite type.

1. Introduction

Tree shifts, introduced by Aubrun and Béal [2, 3], are shift spaces over

Cayley trees. They are more complicated than one-dimensional shift spaces

while still possess a natural one-dimensional structure of symbolic dynamical

systems equipped with multiple shift maps. In classical symbolic dynamical

systems of one-dimension, shifts of finite type (SFTs) play a fundamental

and an essential role, and the investigation into their graph representations

uncovers crucial properties such as irreducibility, mixing, and the existence

of periodic points (cf. [16, 24]). We list some well-studied properties below.

An SFT is nonempty if and only if its essential graph representation contains

a cycle. Every nonempty SFT contains periodic points and an irreducible

SFT has dense periodic points (see [22, 24]). Nevertheless, when dealing

with multidimensional shift spaces, contrary results have been obtained.

Firstly, the emptiness problem is undecidable for two-dimensional SFTs;

there is an aperiodic SFT which has positive topological entropy, and there

is a nonempty SFT which exhibits nonextensible local patterns [8, 14, 17,

21, 32, 33]. These results reveal the uncertainty of multidimensional shift

spaces and have attracted much attention. Recently, Sharma and Kumar

[35] demonstrated the necessary and sufficient condition for determining if

a multidimensional SFT is empty and went further to provide a sufficient
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condition for multidimensional SFTs exhibiting periodic points. More pre-

cisely, they used a paricular irreducibility and mixing conditions to guaran-

tee the nonemptiness, as well as the denseness of periodic points, of shift

spaces. Boyle et al. [9] introduced a mixing condition known as block glu-

ing and showed that every two-dimensional block gluing SFT has dense

periodic points; however, the denseness of periodic points in general mul-

tidimensional block-gluing SFTs is yet to be determined. Besides, there is

the lack of an algorithm for determining if a shift space contains dense pe-

riodic points since it is undecidable. (Note that containing dense periodic

points is a necessary condition of chaos in the sense of Devaney, much effort

has been put into finding the criteria for it.) Chandgotia and Marcus [12]

provided a sufficient condition for block gluing shift spaces that are derived

from an undirected connected graph, pointing out the key role played by the

finiteness of the diameter of the corresponding graph. As there are weakly

and strongly periodic points in multidimensional shifts (a weakly periodic

point x of a Zn-SFT is a point that satisfies σux = x for some 0 ≠ u ∈ Zn),

there exists Zn-SFT which has no weakly periodic point [15]. Since it is dif-

ficult to verify the existence of weakly/strongly periodic points for general

multidimensional shifts, mixing property is crucial in solving such problems.

For more details on the recent works in multidimensional shift spaces, the

readers are referred to [6, 7, 9, 10, 20, 23, 27, 28, 29, 30, 34, 36] and the

references therein. While it is acknowledged that stronger mixing properties

yield a better structure of the systems, the examination of mixing properties

remains a challenge.

Another important problem in symbolic dynamics is the classification of

shift spaces. While the conjugacy of one-sided shifts of finite type is decid-

able [37], the conjugacy of multidimensional SFTs is not (see [13, 18, 19, 25]

for instance). Aubrun and Béal introduced the so-called CPC-irreducible

tree shifts (defined in Section 4) and provided an algorithm for determin-

ing the conjugacy between CPC-irreducible TSFTs [2]. In addition, they

addressed the issue concerning the existence of CPC-irreducible sofic tree

shifts which are not the factors of TSFTs [2, 3]; this is inconsistent with the

classical one-dimensional case where an irreducible sofic shift is the factor

of some irreducible SFT [24]. Meanwhile, the domino problem (also known

as the emptiness problem) is undecidable on surface groups (cf. [1]). Pi-

antadosi [31] indicated that every SFT over finitely generated free group G

has a weakly periodic point and there is a G-SFT which has no strongly
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Space Z-SFTs Zn-SFTs TSFTs
Specification Irreducible Irreducible CPC-irreducible
Decidability Decidable Undecidable Decidable

Table 1. Decidability of irreducibility of shifts of finite type.

periodic point. It is of interest that under what condition a TSFT must

contain strongly periodic points. An affirmative result was obtained by Ban

and Chang [5, 4], demonstrating that every CPC-irreducible TSFT contains

dense CPC-periodic points (defined in Section 4) with a CPC-periodic point

being strongly periodic. (We remark that Ceccherini-Silberstein et al. [11]

also demonstrated that strongly periodic points are dense in all sofic tree

shifts.) The question of the existence of an algorithm which determines the

CPC-irreducibility of TSFTs subsequently follows. Utilizing graph repre-

sentation of TSFT introduced in [4] for the emptiness problem, the study of

irreducibility is then extended from one-dimensional SFTs to TSFTs.

In this paper, we demonstrate that CPC-irreducibility of TSFTs is de-

cidable and derive an algorithm for the examination of CPC-irreducibility.

The difference between CPC-irreducibility and classical irreducibility is that

CPC-irreducibility builds a wall-like cross-section for a given pattern with

the second pattern necessarily sticking to the entire “wall”, where as the

classical irreducibility requires only that any two given patterns can be con-

nected. We introduce extended directed graph representation (defined in

Section 5) of tree shifts of finite type, which is an extension of the classical

graph representation of shifts of finite type (cf. [24]) and graph represen-

tation of TSFT introduced by Ban and Chang (cf. [5]). More specifically,

an extended directed graph contains a set consisting of divergent-edges, re-

flecting the structure of the tree and local patterns. The divergent-edge

set is the main difference between graph representations of SFTs and TS-

FTs, and plays a crucial role in the determination of CPC-irreducibility.

After a necessary repeated process of reduction, a tree shift of finite type is

CPC-irreducible if and only if its extended graph representation is strongly

connected. Table 1 lists the decidability of the irreducibility of shifts of finite

type over different underlying lattices.

The paper is organized as follow. We first reiterate the definitions of

tree shifts that are relevant to the analysis here in Section 2. In Section 3,

properties of complete prefix codes are introduced whereas in Section 4 those

relations between CPC-irreducible TSFTs that are necessary in deriving
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the main results are presented. We next introduce extended directed graph

representation of TSFTs in Section 5 and in Section 6 we demonstrate that

the CPC-irreducibility of TSFTs is decidable. Finally, the flowchart of the

algorithm is presented together with a brief discussion and open problems

in the concluding section.

2. Notation and Terminology

Despite most of what we derive extends to general trees, we focus on

labelings of the infinite dyadic tree, which is the set of all finite words on

a two-element alphabet Σ = {s1, s2}. Algebraically speaking, the infinite

dyadic tree Σ∗ = ⋃
n≥0

Σn is a free monoid, where Σn denotes the set of all

finite words of length n and Σ0 = {ϵ} consists of the empty word. A word

g ∈ Σ∗ corresponds uniquely to a node of the tree. We denote by ∣g∣ the
length of the word g.

LetA be a finite labeling set. A labeled tree (or configuration) is a function

t ∶ Σ∗ → A. For each g ∈ Σ∗, tg ∶= t(g) is the label attached to the node

determined by g. We denote by T (or AΣ∗) the set of all labeled trees on A.
The shift transformation σ ∶ Σ∗×T → T is defined by (σwt)g ∶= σ(w, t)g = twg

for all w, g ∈ Σ∗. For each n ≥ 0, let ∆n = ⋃
0≤i≤n

Σi denote the initial n-subtree

of the dyadic tree. Note that ∆n has n+ 1 levels. An n-block u is a labeling

of the n-subtree ∆n, and ∆n, which is denoted by s(u), is called the support

of u. We say that an n-block u appears in a labeled tree t (or u is accepted

by t) if there is a node g ∈ Σ∗ such that tgw = uw for all w ∈∆n. A tree shift

X is the set of all labeled trees which avoid all of a certain set of blocks

(such a set is called a forbidden set of X). We denote by X = XF . A tree

shift X is called a tree shift of finite type (TSFT) if X = XF for some finite

forbidden set F .
Suppose u is a 1-block for which uϵ = α,us1 = β, and us2 = γ. We may

write u as α → (β, γ) for convenience. Furthermore, we denote by ∂∆n the

boundary of the initial n-subtree; that is,

∂∆n = {g ∈∆n ∶ gsi ∉∆n for i = 1,2} = {g ∈∆n ∶ ∣g∣ = n}.

A subset S of Σ∗ is called prefix-closed if all prefixes of S are in S, and the

boundary of S is defined similarly as above; that is,

∂S = {g ∈ S ∶ gsi ∉ S for i = 1,2}.

A finite subset S ⊆ Σ∗ is called a prefix code if no word in S is a prefix of

another word in S; a prefix code S is called a complete prefix code (CPC)
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if for every w ∈ Σ∗ with ∣w∣ ≥ max{∣g∣ ∶ g ∈ S} there exists g ∈ S such that g

is a prefix of w. A CPC forms a sort of cross-section of the tree such that

each infinite path from the root intersects with the CPC at exactly one of

its nodes.

3. Properties of Complete Prefix Code

In this section, we reveal properties of complete prefix code for the self-

containedness of this paper. For more details, we refer the readers to [26].

Suppose S is a CPC. Define

R(S) = {g ∈ Σ∗ ∶ gg′ ∈ S for some g′ ∈ Σ∗}

be the initial finite subtree whose boundary is S.

Proposition 3.1. Let S be a CPC. For each g ∈ R(S), S′ ∶= ∂A is a CPC

and R(S′) = A, where A = {h ∈ Σ∗ ∶ gh ∈ R(S)}.

Proof. First, S′ is a prefix code, for if otherwise, there exist some g, g′ ∈ S′

such that g ≠ g′ and g′ is a prefix of g and thus gg′ ∈ S is a prefix of gg ∈ S,
which contradicts that S is a CPC. Herein, we refer to proper prefix as prefix

unless otherwise stated, and g is a proper prefix of h means that h = gg′ for
some g′ ≠ ϵ.

Next, we show that S′ is a complete prefix code. That is, for each g ∈ Σ∗

with ∣g∣ ≥ maxh∈S′ ∣h∣, there exists some prefix g′ ∈ S′ of g. Note that, for

sufficiently large k ∈ N, ggsk1 has a prefix r ∈ S by the assumption that S

is a CPC. In this case, we can show that ∣gg∣ ≥ ∣r∣. For if ∣gg∣ < ∣r∣ along
with that r ∈ S = ∂R(S) and that R(S) is prefix-closed, it implies that

∣g∣ < maxh∈S′ ∣h∣. It therefore contradicts that ∣g∣ ≥ maxh∈S′ ∣h∣. Since r ∈ S,
r cannot be a prefix of g. Therefore, r = gg′ for some g′ ∈ A. This indicates

that g′ is a prefix of g. Since gg′si ∉ R(S) for all si ∈ Σ, it follows that

g′ ∈ S′.
Finally, it is left to show that R(S′) = A. If h ∈ R(S′), then there exists

some h′ ∈ S′ where h is a prefix of h′. Hence, gh ∈ R(S) is a prefix of gh′ ∈ S
and h ∈ A as a consequence. If h ∈ A, then gh ∈ R(S) is a prefix of some

gh′ ∈ S = ∂R(S), i.e., h′ ∈ ∂R(S′). Since h is a prefix of h′, it arrives at

h ∈ R(S′). □

Proposition 3.1 demonstrates that if S is a CPC and g ∈ R(S), then {g ∈
Σ∗ ∶ gg ∈ S} is also a CPC. In addition, let Sg = {g ∈ S ∶ g is a prefix of g},
we show that replacing Sg with any CPC remains a CPC.
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Proposition 3.2. Let S1, S2 be CPCs, and g ∈ R(S1). Suppose S = S1∖{gh ∶
h ∈ Σ∗}⋃ gS2. Then,

(1) S is a CPC.

(2) R(S) = (R(S1) ∖ {gh ∈ R(S1)})⋃ gR(S2).

Proof. (1) Firstly, we show that S is a prefix code by contradiction. That

is, there exists some g′, g′′ ∈ S with g′ ≠ g′′ such that g′ is a prefix of g′′.

Then, it must lies in the following two cases:

● g is a prefix of g′. Then, g′ = gh′ and g′′ = gh′′ for some h′, h′′ ∈ Σ∗,
where h′, h′′ ∈ S2 and h′ is a prefix of h′′. It contradicts that S2 is a

prefix code.

● g is not a prefix of g′. Then, g is not a prefix of g′′. Hence, g′, g′′ ∈ S1

contradicts that S1 is a prefix code.

Next, we show that S is a CPC. That is, for each g ∈ Σ∗ with ∣g∣ ≥
maxh∈S ∣h∣, there exists some g′ ∈ S such that g′ is a prefix of g. It can be

verified by considering the following two cases:

● g is a prefix of g. Then, g = gh′, where ∣g∣ + ∣h′∣ = ∣g∣ ≥ maxh∈S ∣h∣ ≥
∣g∣ +maxh∈S2 ∣h∣. Thus, there exists some h′′ ∈ S2 such that h′′ is a

prefix of h′ and thus g′ ∶= gh′′ ∈ S is a prefix of g.

● g is not a prefix of g. Then for s1 ∈ Σ and sufficiently large k ∈ N,
gsk1 has a prefix g′ ∈ S1. In this case, g′ ∈ S. Furthermore, g′ is a

prefix of g, for if otherwise, ∣g′∣ > ∣g∣ ≥ maxh∈S ∣h∣ which results in a

contradiction.

(2) For convenience, denote A = (R(S1) ∖ {gh ∈ R(S1)})⋃ gR(S2).
If g ∈ R(S), then it must be in one of the following two cases:

● g is a prefix of g. In this case, there is some g′ ∈ gS2 such that g is

the prefix of g′ and thus g ∈ gR(S2) ⊂ A.

● g is not a prefix of g, then g is a prefix of some g′ ∈ S1∖{gh ∶ h ∈ Σ∗}.
Thus, g ∈ R(S1) and g ∉ gR(S2). Hence, g ∈ A.

On the other hand, if g ∈ A, then it must be in one of the following two

cases:

● g ∈ gR(S2). Then, g ∈ R(S) naturally.
● g ∈ R(S1) ∖ {gh ∈ R(S1)}. Then, g is a prefix of some g′ ∈ R(S1). If
g is not a prefix of g′, then g′ ∈ R(S1 ∖ {gh ∈ R(S1)}) ⊂ R(S). If g is

a prefix of g′, then there exists some g′ ∈ gS2 such that g is a prefix

of g′ and thus g ∈ R(S).
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The discussion above leads to that R(S) ⊂ A and A ⊂ R(S), which com-

pletes the proof. □

Proposition 3.3. Let S1, S2 be CPCs, g ∈ R(S1). Define P = (R(S1)∖{gh ∈
R(S1)})⋃{gh ∶ h ∈ R(S2)}. Then,

(1) P is prefix-closed.

(2) ∂P is a CPC.

Proof. (1) If g = g1 . . . gk−1gk ∈ R(S1) ∖ {gh ∈ R(S1)}, then for any prefix

g′ ∶= g1 . . . gm of g for some m < k, it is clear that g′ ∈ R(S1) since R(S1) is
prefix-closed. On the other hand, g′ ∉ {gh ∈ R(S1)}, for if otherwise, g′ ∈
{gh ∈ R(S1)} and so g ∈ {gh ∈ R(S1)}. Hence, g′ ∈ R(S1)∖{gh ∈ R(S1)} ⊂ P .

If g ∈ {gh ∈ Σ∗ ∶ h ∈ R(S2)}, denote g = g1 . . . gk = gh′ for some h′ ∈ Σ∗.
Then, any prefix g′ of g must lie in one of the following two cases:

● g is a prefix of g′. Then, g′ = gh′′ for some h′′ ∈ Σ∗. Therefore, h′′ is
a prefix of h′ and g′ ∈ {gh ∈ Σ∗ ∶ h ∈ R(S2)} ⊂ P .

● g is not a prefix of g′. Then, g′ ∈ R(S1)∖{gh ∈ R(S1)} ⊂ P naturally.

(2) It can be shown that ∂P is a prefix code. Otherwise, there are g′, g′′ ∈ ∂P
with g′ ≠ g′′ yet g′′ = g′g1 . . . gk for some gi ∈ Σ. Hence, g′ ∉ ∂P .

Next, we show that ∂P is a CPC. Suppose that g ∈ Σ∗ with ∣g∣ ≥maxh∈∂P ∣h∣.
There are two cases:

● g is a prefix of g. Then, g = gh′ for certain h′ ∈ Σ∗. In this case

∣g∣ = ∣g∣+ ∣h′∣ ≥maxh∈∂P ∣h∣ ≥ ∣g∣+maxh∈S2 ∣h∣. This implies that there

is some w ∈ S2 with wsi ∉ R(S2) for all si ∈ Σ such that w is a prefix

of h′. In this case, gw ∈ P and gwsi ∉ P for all si ∈ Σ. Hence,

gw ∈ ∂P is a prefix of g = gh′.
● g is not a prefix of g.

– If ∣g∣ ≥ maxh∈R(S1) ∣h∣, then there exists g′ ∈ S1 such that g′ is

a prefix of g and g′si ∉ R(S1). Note that g is not a prefix of g

and thus is not a prefix of g′ or g′si for all si ∈ Σ, since ∣g∣ ≥ ∣g′∣.
Hence, g′ ∈ P and g′si ∉ P for each si ∈ Σ.

– If maxh∈∂P ∣h∣ ≤ ∣g∣ <maxh∈R(S1) ∣h∣, then there exists some k > 0
such that gski has a prefix g′ ∈ S1. In this case, g′ is a prefix

of g. Otherwise, g′ = gsmi for some m with 1 ≤ m ≤ k and g′ ∈
S1 implies gsi ∈ R(S1)⋂P and thus ∣g∣ < maxh∈∂P ∣h∣. Hence,

g′si ∉ R(S1). We have derived that g′ ∈ P and g′si ∉ P for each

si ∈ Σ.
□
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Proposition 3.4. Let S,P be CPCs. Then SP is a CPC.

Proof. Firstly, we claim that SP is a prefix code. Otherwise, there exist

g, h ∈ SP , such h ≠ g is a prefix of g, where g = g′g′′, h = h′h′′, g′, h′ ∈ S, and
g′′, h′′ ∈ P . In this case, h′ is a prefix of g′g′′, and thus either h′ is a prefix

of g′ or g′ is a prefix of h′. It implies g′ = h′ for the reason that g′, h′ ∈ S
and S is a CPC. Hence, h′′ is a prefix of g′′. Since g′′, h′′ ∈ P and P is a

CPC, g′′ = h′′. This contradicts that g ≠ h.
Now we claim that SP is a CPC. That is, given any g ∈ Σ∗ with ∣g∣ ≥

maxh∈SP ∣h∣, g has a prefix g′ ∈ S. Since ∣g∣ ≥ maxh∈SP ∣h∣ ≥ maxh∈S ∣h∣, we
may denote g = g′r for some g′ ∈ S, r ∈ Σ∗. Then for some sufficiently

large k ∈ N such that ∣rsk1 ∣ ≥ maxh∈P ∣h∣, rsk1 has a prefix h′ ∈ P . In this

case, either h′ is a prefix of r or r is a prefix of h′. Note that if h′ is

not a prefix of r, then ∣g′r∣ < ∣g′h′∣ ≤ maxh∈SP ∣h∣, which contradicts that

∣g∣ = ∣g′r∣ ≥maxh∈SP ∣h∣. □

4. Irreducible on Complete Prefix Code

Suppose X is a tree shift of finite type. Then there exists F ⊂ A∆n such

that X = XF for some n ∈ N. Ban and Chang [5] showed that there exist A′

and F ′ ⊂ (A′)∆1 such that XF is topologically conjugate with XF ′ , which

is analogous to the classical result. For the rest of this elucidation, the

forbidden set F of a TSFT X = XF is referred to as a subset of A∆1 unless

stated otherwise; such an F is “maximal” in the sense that every pattern

u ∈ A∆1 ∖ F is extensible. In addition, we say that X is induced by an

allowable set B = A∆1 ∖F .

Proposition 4.1. Let X be a TSFT induced by some allowable set B ⊆ A∆1.

Suppose u is a pattern with following properties:

● ∂s(u) is a CPC.

● If g∆1 ⊆ s(u), ug → (ugs1 , ugs2) ∈ B.

Then, there exists an x ∈ X such that x∣s(u) = u. That is, u is an allowable

pattern in X.

Proof. Suppose M ∶= minh∈∂s(u) ∣h∣. Let u(M) ∶= u. There exists a sequence

of patterns {u(n)}∞n=M such that

● n =minh∈∂s(u(n)) ∣h∣.
● u(n)∣u(n−1) = u(n−1) if n >M .

● ∂s(u(n)) is a CPC.

● If g∆1 ⊆ s(u(n)), u(n)g → (u(n)gs1 , u
(n)
gs2) ∈ B.
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This can be proved by construction on existence of u(k+1) given the finite

sequence {u(n)}kn=M for all k ≥M .

When k =M , such properties are held by definition of u(M).

Suppose the claim holds for k, the case k + 1 can also be verified by

induction hypothesis. Note that ∂s(u(k))Σ is a CPC by Proposition 3.4,

and

s(u(k+1)) ∶= R(∂s(u(k))Σ) = s(u(k))⋃∂s(u(k))Σ.

Alternatively, to construct u(k+1), it is sufficient to determine the pattern

on ∂s(u(k))Σ. On the other hand, for each g′ ∈ ∂s(u(k)) there exists some

u
(k)
g′ → (αg′,s1 , αg′,s2) ∈ B according to the assumption of essential graph

representation. In this case, define u(k+1) as follows:

u(k+1)g ∶=
⎧⎪⎪⎨⎪⎪⎩

u
(k)
g if g ∈ s(u(k))

αg′,si if g = g′si, si ∈ Σ

Then, minh∈∂s(u(k+1)) ∣h∣ = 1 +minh∈∂s(u(k)) ∣h∣, and ∂s(u(k+1)) is a CPC by

Proposition 3.4.

If g ∈ Σ∗ with g∆1 ⊆ s(u(k+1)), there are two cases:

● g∆1 ⊆ s(u(k)). Then u
(k+1)
g → (u(k+1)gs1 , u

(k+1)
gs2 ) = u

(k)
g → (u(k)gs1 , u

(k)
gs2) ∈

B.

● g∆1 ⊈ s(u(k)). Then g ∈ ∂s(u(k)) and u
(k+1)
g → (u(k+1)gs1 , u

(k+1)
gs2 ) =

u
(k)
g → (αg,si , αg,s2) ∈ B.

Hence, the four properties are satisfied for the case of k + 1.
By mathematical induction, the assertion holds for all k ∈ N.
In this case, for 0 ≤ n < M , define u(n) ∶= u(M)∣∆n−1 . Then, {u(k)}∞

k=1
determines an x ∈X by xg = u(∣g∣)g and xϵ = α. This completes the proof. □

A tree shiftX is called irreducible on complete prefix code (CPC-irreducible)

if for each pair of blocks u, v ∈ Bn(X), there is an x ∈X and a complete prefix

code P ⊂ ⋃k>nΣ
k such that u is a subtree of x rooted at ϵ and v is a subtree

of x rooted at g for all g ∈ P , where Bn(X) denotes the set of n-blocks of X.

In other words, x∣∆n = u and x∣g∆n = v for each g ∈ P . CPC-irreducibility

is defined by Aubrun and Béal and is named irreducible in [2, 3]. They ex-

tended the Williams’ Classification Theorem to CPC-irreducible tree shifts

of finite type. In addition, there exists a CPC-irreducible sofic tree shift

which is not a factor of a CPC-irreducible TSFT.

Let X be a tree shift and x ∈X. We say that x is strongly periodic if the

orbit {σgx}g∈Σ∗ is finite. If there exists a CPC P such that σgx = x for each
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g ∈ P , then x is a CPC-periodic point. It is obvious that a CPC-periodic

point is strongly periodic. Ban and Chang [5] demonstrated that every

CPC-irreducible TSFT has dense CPC-periodic points, which concludes that

strongly periodic points are dense in CPC-irreducible TSFTs. Furthermore,

they addressed the following equivalent statements of CPC-irreducibility.

Theorem 4.2 (See [5]). Suppose X is a tree shift. The following are equiv-

alent.

(i) X is CPC-irreducible.

(ii) For each pair of blocks u ∈ Bn(X), v ∈ Bm(X) there exists a collection

of CPCs {Pw}w∈Σn and x ∈X such that

x∣∆n = u and x∣wg∆m = v for all w ∈ Σn, g ∈ Pw.

(iii) For each pair of blocks u ∈ Bn(X), v ∈ Bm(X) there exists a collection

of CPCs {Pk}1≤k≤l and x ∈X such that x∣∆n = u and, for each w ∈ Σn

there exists 1 ≤ k ≤ l such that x∣wg∆m = v for all g ∈ Pk.

Whenever X is a 1-step TSFT, the CPC-irreducibility can be rephrased

more elegantly. Note that X is a 1-step TSFT if X = XF for some F ⊂ A∆1 .

Lemma 4.3. Let X be a 1-step TSFT. Then X is CPC-irreducible if and

only if for every α,β ∈ A there exists a CPC S and x ∈ X such that xϵ = α
and xg = β for each g ∈ S.

Proof. The proof follows directly from either the definition of CPC-irreducible

tree shifts or from Theorem 4.2, thus it is omitted. □

We say that two symbols α and β are CPC-connected (in X) if there

exists a CPC S and x ∈X such that xϵ = α and xg = β for all g ∈ S. Suppose
α → (β, γ) is an allowable block in X for some β ≠ γ. The following theorem

demonstrates that replacing α → (β, γ) or α → (γ, β) with α → (γ, γ) does
not break the CPC-irreducibility if β and γ are CPC-connected. Figures 1

and 2 illustrate the idea of the proof of Theorem 4.4.

Theorem 4.4. Let X be a TSFT induced by some allowable set B ⊆ A∆1.

Suppose α → (β, γ) ∈ B such that β and γ are CPC-connected in X. Let Y

be the TSFT induced by B′ ∶= (B ∖ {α → (β, γ)})⋃{α → (γ, γ)}. Then, X

is CPC-irreducible if and only if Y is CPC-irreducible.

Proof. Suppose X is CPC-irreducible. Given any α0, β0 ∈ A, Lemma 4.3

indicates that there exist x = x⟨α0,β0⟩ and CPC S = S⟨α0,β0⟩ such that xϵ = α0

and xg = β0 for all g ∈ S. Let u ∶= x∣R(S). We claim that there exists an
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α

β

β0β0

γ

δ

β0β0

ζ

β0β0

allowable pattern in X

α

γ

δ

β0β0

ζ

β0β0

γ

δ

β0β0

ζ

β0β0

allowable pattern in Y

Replace

Figure 1. Illustration of proof of Theorem 4.4 Part 1: If
X is CPC-irreducible, then Y is CPC-irreducible. To make
the left pattern an allowable pattern in Y , we only need to
replace the local pattern starting with β by the one starting
with γ.

β

δ

γγ

ζ

γγ

allowable CPC-connected pattern in X
α

γ

δ

β0β0

ζ

β0β0

γ

δ

β0β0

ζ

β0β0

allowable pattern in Y

α

β

δ

γ

δ

β0β0

ζ

β0β0

γ

ζ

γγ

γ

δ

β0β0

ζ

β0β0

allowable pattern in X

Replace

Figure 2. Illustration of proof of Theorem 4.4 Part 2: If
Y is CPC-irreducible, then X is CPC-irreducible. Suppose
the top pattern, which is allowable in X such that β is CPC-
connected to γ. To make the lower left pattern an allowable
pattern in X, we replace one local pattern starting with γ by
the top pattern first, then we complete the construction by
gluing patterns starting with γ.

allowable pattern u = u⟨α0,β0⟩ in Y such that uϵ = α0 and ug = β0 for all

g ∈ S, where S(= S⟨α0,β0⟩) ∶= ∂s(u) is a CPC. Proposition 4.1 yields that Y

is CPC-irreducible.

The desired u can be constructed as follows.
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Denote u(0) = u and S0 = S. Consider the set A0 ∶= {g ∈ Σ∗ ∶ g∆1 ⊆
R(S), u(0)g → (u(0)gs1 , u

(0)
gs2) = α → (β, γ)}. If A0 = ∅, then u = u(0). Otherwise,

choose g ∈ A0 such that g =maxh∈A0 ∣h∣, and consider a specific pattern u(1)

defined as

u(1) ∶= (u(0)∖{(gs1h,u(0)gs1h
) ∶ gs1h ∈ R(S0)})⋃{(gs1h,u(0)gs2h

) ∶ gs2h ∈ R(S0)}.

See Figure 1 for the construction of u(1). Herein, we use the set-theoretic

definition of function to present the construction of desired pattern for clar-

ity. Note that S′ ∶= ∂{h ∈ Σ∗ ∶ gs2h ∈ R(S)} is a CPC and R(S′) = {h ∈
Σ∗ ∶ gs2h ∈ R(S)} by Proposition 3.1. Denote S1 = ∂s(u(1)). It follows from
Proposition 3.3 that S1 is a CPC.

Next, for any g′ ∈ S1, we claim that u
(1)
g′ = β0. If gs1 is not a prefix of g′,

then u
(1)
g′ = u

(0)
g′ = β0. If gs1 is a prefix of g′, g′ = gs1w, then u

(1)
gs1w

= u(0)gs2w
=

β0. That is, u
(1)
g = β0 for all g ∈ S.

Note that A1 ∶= {g ∈ Σ∗ ∶ g∆1 ⊆ R(S), u(0)g → (u(0)gs1 , u
(0)
gs2) = α → (β, γ)} =

A0 ∖ {g}. If A1 = ∅, then u = u(1). Otherwise, we can construct u(2) via the

same argument. Repeat the procedure and construct {An} and {u(n)} with
An ⊋ An+1 if An ≠ ∅. Let N = ∣A0∣ and u = u(N) is the desired pattern.

Now if Y is CPC-irreducible, a similar argument follows. Since Y is CPC-

irreducible, given any α0, β0 ∈ A, there exists some allowable pattern in Y ,

u = u⟨α0,β0⟩ such that S = S⟨α0,β0⟩ = ∂s(u) is a CPC and uϵ = α0 and ug = β0
for all g ∈ S. It remains to find an allowable pattern in X, u = u⟨α0,β0⟩, where

S(= S⟨α0,β0⟩) ∶= ∂s(u) is a CPC, uϵ = α0 and ug = β0 for all g ∈ S.
Note that if α0 = β and β0 = γ, existence of allowable pattern u⟨β,γ⟩ is

guaranteed by the assumption of CPC-connectedness in X in Theorem 4.4.

For other (α0, β0) ≠ (β, γ), u can be constructed in the following manner.

Denote u(0) = u and S0 = S. Let A0 = (A⟨α0,β0⟩) ∶= {g ∈ Σ∗ ∶ g∆1 ⊆
R(S), ug → (ugs1 , ugs2) = α → (γ, γ)}.

A0 ≠ ∅. Choose g ∈ A0 such that ∣g∣ = maxh∈A0 ∣h∣. Consider the pattern

u(1) defined as follows:

u(1) ∶= (u(0) ∖ {(gs1h,u(0)gs1h
) ∶ gs1h ∈ R(S0)})

⋃{(gs1h,u⟨β,γ⟩h )) ∶ h ∈ R(S⟨β,γ⟩)}

⋃{(gs1wh,u(0)gs2h
) ∶ w ∈ S⟨β,γ⟩, gs2h ∈ R(S0)},

where u
⟨β,γ⟩
h and S

⟨β,γ⟩
are already given. See Figure 2 for the construction

of u(1).

Denote S1 = ∂s(u(1)). Then, by Proposition 3.3, S1 is a CPC.
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Next, for all g′ ∈ S1, we claim that u
(1)
g′ = β0. If gs1 is not a prefix of g′,

then u
(1)
g′ = u

(0)
g′ = β0. If gs1 is a prefix of g′, g′ = gs1wh where w ∈ S⟨β,γ⟩.

Thus, u
(1)
gs1wh = u

(0)
gs2h
= β0.

Note that A1 ∶= {g ∈ Σ∗ ∶ g∆1 ⊆ R(S1), u(1)g → (u(1)gs1 , u
(1)
gs2) = α → (γ, γ)} =

A ∖ {g}. If A1 = ∅, then u = u(1). Otherwise, we can construct u(2) via the

same argument. Repeat the procedure and construct {An} and {u(n)} with
An ⊋ An+1 if An ≠ ∅. Let N = ∣A0∣ and u = u(N) is the desired pattern.

Therefore, u can be found by construction, the proof is then complete. □

5. Extended Directed Graph

Given a finite set V , a directed graph is a pair (V,E) consists of vertex

set V and edge set E ⊂ V × V . Directed graph plays an important role in

the investigation of shifts of finite type. For instance, it is known that a

shift of finite type in dimension one is irreducible if and only if its essential

graph representation is strongly connected (cf. [24]), where a directed graph

is called strongly connected if for any two vertices v1, v2 there is a path from

v1 to v2. An extended directed graph is an ordered triplet G = (V,Ec,Ed)
defined as follows.

(1) V is called the vertex set.

(2) Ec ⊂ V × V is called the convergent-edge set.

(3) Ed ⊂ V × V × V is the divergent-edge set.

The ordered pair Gc = (V,Ec) of an extended directed graph G is called the

intrinsic graph of G. Note that the divergent-edge set always consists of

those edges α → (β, γ) satisfying β ≠ γ. It is seen that the intrinsic graph of

an extended directed graph is a classical directed graph.

Suppose G = (V,Ec,Ed) is an extended directed graph. Define F ⊂ V ∆1

as

F = {α → (β,β) ∶ (α,β) ∉ Ec}⋃{α → (β, γ) ∶ (α,β, γ) ∉ Ed, β ≠ γ}

and let XG = XF . The following proposition extends a classical result in

symbolic dynamics.

Proposition 5.1. Given an extended directed graph G = (V,Ec,Ed). Then

XG is a TSFT over the alphabet V .

Now suppose X is a TSFT induced by B ⊆ A∆1 . An extended directed

graph representation of X is G = (V,Ec,Ed) defined as follows.

1) V = A;
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0

11

0

21

0 1 0

1

2

Figure 3. The extended directed graph representation of al-
lowable blocks. An extended directed graph consists of a ver-
tex set and two edge sets, convergent-edge set and divergent-
edge set. Suppose u = α → (β, γ) is an allowable block.
Then u is represented by a convergent-edge if β = γ, and u
is represented by a divergent-edge otherwise. We use solid
line and dashed line to distinguish a convergent-edge from a
divergent-edge.

2) Ec = {(α,β) ∈ A ×A ∶ α → (β,β) ∈ B};
3) Ed = {(α,β, γ) ∈ A ×A ×A ∶ β ≠ γ,α → (β, γ) ∈ B}.

With abuse of notation, we also denote (α,β) ∈ Ec and (α,β, γ) ∈ Ed as

α → (β,β) ∈ Ec and α → (β, γ) ∈ Ed, respectively. See Figure 3. The follow-

ing proposition, which is analogous to a result in classical symbolic dynamics,

comes immediately.

Proposition 5.2. Suppose X is a TSFT and G is an extended directed

graph representation of X. Then XG =X.

Similar to the strong connectedness of a directed graph (also known as

irreducible graph), we introduce the (d, c)-irreducibility of an extended di-

rected graph as follows.

Definition 5.3. Let G = (V,Ec,Ed) be an extended directed graph.

(1) G is called (d, c)-reducible if there exists α → (β, γ) ∈ Ed (respectively

α → (γ, β) ∈ Ed) such that there exists a path in Gc from β to γ (respec-

tively from γ to β) and α → (γ, γ) ∉ Ec (respectively α → (β,β) ∉ Ec).

(2) H ∶= (V,Ec⋃{α → (γ, γ)},Ed) is called a (d, c)-reduction of G, denoted
by G ⪯H.

(3) G is called (d, c)-irreducible if it is not (d, c)-reducible.
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0

1

2

0

1

2

Figure 4. The graph on the right-hand side is a (d, c)-
reduction of the graph on the left-hand side, and is (d, c)-
irreducible.

It can be seen that ⪯ defined in Definition 5.3 is a partial order on the

set of extended directed graphs. In addition, such a partially ordered set

is well-ordered. The (d, c)-reduction for each extended directed graph G is

finite; that is, there exists N ∈ N such that Gn = Gm for n,m ≥ N , where

G = G0 ⪯ G1 ⪯ G2 ⪯ ⋯.

Remark 5.4. Observe that the (d, c)-reduction is symmetric. More specif-

ically, if there exists α → (γ, β) ∈ Ed such that there is a path in Gc from

β to γ and α → (γ, γ) ∉ Ec, then we can still construct H as Definition 5.3

does.

Theorem 5.5. Let X be a TSFT and let G = (A,Ec,Ed) be an extended

directed graph representation of X. Suppose H is an extended directed graph

such that G ⪯ H. Then XG is CPC-irreducible if and only if XH is CPC-

irreducible.

Proof. Suppose H = (A,E′c,Ed) is a (d, c)-reduction of G such that α →
(γ, γ) ∈ E′c ∖ Ec. In other words, α → (β, γ) ∈ Ed and there exists a path

δ0δ1 . . . δN in Gc such that δ0 = β and δN = γ for some β ∈ A. Define u ∈ A∆N

as ug ∶= δ∣g∣ for g with ∣g∣ ≤ N . It follows from Proposition 4.1 that there

exists an x ∈ XG such that x∣∆N
= u. Similar to the discussion in the proof of

Theorem 4.4, XG is CPC-irreducible if and only if XH is CPC-irreducible. □

Example 5.6. Suppose G = (V,Ec,Ed) is an extended directed graph given

as V = {0,1,2},Ec = {(0,1), (1,2), (2,1)}, and Ed = {(0,1,2)}. It is seen

that G is (d, c)-reducible. The (d, c)-reduction of G is H = (V,E′c,Ed) with
E′c = Ec⋃{(0,2)}. Furthermore, H is (d, c)-irreducible. See Figure 4.
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6. Decidability of CPC-Irreducibility

The preceding theorem raises the question of relationship between CPC-

irreducible TSFTs and (d, c)-irreducible extended directed graphs. A clas-

sical result in symbolic dynamics is that a (1-step) shift of finite type is

irreducible if and only if it has an irreducible directed graph representation.

In addition, every shift of finite type is topologically conjugate with a 1-step

shift induced by some directed graph. This transfers the discussion of irre-

ducible SFTs to irreducible graphs. Since G is finite, there exists N ∈ N such

that Gn = Gm for n,m ≥ N , where Gn ⪯ Gn+1 and G1 = G.

Theorem 6.1. Let X be a TSFT and let G = (A,Ec,Ed) be a (d, c)-
irreducible extended directed graph representation of X. Then, XG is CPC-

irreducible if and only if Gc is strongly connected.

Example 6.2. Suppose A = {0,1,2,3,4,5} and X is a TSFT induced by

B =
⎧⎪⎪⎨⎪⎪⎩

0→ (1,1),0→ (1,2),1→ (2,2),2→ (0,0),2→ (4,4),

3→ (4,4),3→ (5,5),4→ (3,3),5→ (1,2)

⎫⎪⎪⎬⎪⎪⎭
.

The graph G above in Figure 5 is an extended directed graph representation

of X. Observe that G is (d, c)-reducible and there are two convergent-

edges ((0,2) and (5,2)) generated via (d, c)-reduction. Let H be the (d, c)-
irreducible extended directed graph of G. It follows immediately that Hc is

strongly connected. Theorem 6.1 demonstrates that X is CPC-irreducible.

Lemma 6.3. Let X be a CPC-irreducible TSFT and let G be an extended

directed graph representation of X. Suppose V = V1⋃V2⋃ . . .⋃VN such that

N >= 2 and V1, ..., VN are strongly connected components. Then

(1) for each Vi, there exists β, γ ∈ Vi, α ∈ Vj (i ≠ j) such that α → (β, γ) ∈
Ec⋃Ed (denoted by Vj

αÐÐÐ→
(β,γ)

Vi);

(2) there exist distinct Vi1 , . . . , ViM , where 1 ≤ i1 ≤ ⋯ ≤ iM ≤ N , and

αij , βij , γij ∈ Vij such that

Vi1

αi1ÐÐÐÐÐÐ→
(βiM

,γiM )
ViM

αiMÐÐÐÐÐÐÐÐ→
(βiM−1 ,γiM−1)

. . .
αi3ÐÐÐÐÐ→

(βi2
,γi2)

Vi2

αi2ÐÐÐÐÐ→
(βi1

,γi1)
Vi1 .

In addition, there exists j0 ∈ {i1, . . . , iM} such that βj0 ≠ γj0, αj0+1 →
(βj0 , βj0) ∉ Ec and αj0+1 → (γj0 , γj0) ∉ Ec.

Proof. (1) Suppose not. Then, there exists Vi such that for every β, γ ∈ Vi,

and α ∈ V ∖ Vi, α → (β, γ) ∉ Ec⋃Ed. However, for every given x with

xϵ ∈ V ∖ Vi, there exists a sequence {wn}∞n=0 ⊂ Σ∗ such that ∣wn∣ = n, wn
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H0

1
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3

4
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Figure 5. Extended directed graph representation G of
TSFT in Example 6.2 (the above one). The graph H is
the (d, c)-reduction of G and is (d, c)-irreducible (the two
red edges are generated convergent-edges). In addition, it is
easily seen that Hc is strongly connected.

is a prefix of wn+1 and xwn ∈ V ∖ Vi. This can be proved by the existence

of {wn}Nn=0 such that ∣wn∣ = n, wn is a prefix of wn+1 and xwn ∈ V ∖ Vi by

induction on N .

When n = 0, xw0 ∈ V ∖ Vi by the definition of x. Suppose the assertion

holds for N , then we verify the case N + 1. Since xwN
→ (xwNs1 , xwNs2) ∈ B

and xwn ∈ Vk for some Vk ⊆ V ∖ Vi, thus for some a ∈ {s1, s2}, xwNa ∈ V ∖ Vi.

Let wN+1 ∶= wNa and the induction hypothesis holds.

By mathematical induction, the assertion holds for all N ≥ 0. Since X is

CPC-irreducible, given any α̂ ∈ V ∖Vi and β̂ ∈ Vi there exist y ∈X and CPC

S such that yϵ = α̂ and yg = β̂ for all g ∈ S by Lemma 4.3. However, the
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argument above guarantees the existence of a particular wN0 ∈ {wn}∞n=0 ∩ S
that β̂ = ywN0

∈ V ∖ Vi, which is a contradiction.

(2) First we prove the existence of Vi’s by contradiction. Suppose not, we

may find distinct Vi1 , Vi2 , . . . , ViN+1 along with αij , βij , γij ∈ Vij such that

ViN+1

αiN+1ÐÐÐÐÐ→
(βiN

,γiN )
ViN

αiNÐÐÐÐÐÐÐÐ→
(βiN−1 ,γiN−1)

. . .
αi3ÐÐÐÐÐ→

(βi2
,γi2)

Vi2

αi2ÐÐÐÐÐ→
(βi1

,γi1)
Vi1 ,

which is impossible since there are only N distinct Vi’s.

Now we show that the existence of j0 naturally follows from the ex-

istence of {Vik}Mk=1 by contradiction. For simplicity, denote iM+1 = i1.

Suppose for each 1 ≤ j ≤ M , there exists some δij+1 ∈ {βij+1 , γij+1} such

that αij → (δij+1 , δij+1) ∈ Ec. Then it contradicts that Gc∣⋃M
k=1 Vik

is not

strongly connected. It is because for all α ∈ Vij0
, β ∈ Vij1

, if j0 < j1,

α,αij0
, δij0+1 , αij0+1

, δij0+2 , . . . , δij1 , β is a sequence in which neighboring ver-

tex are connected. Such a sequence also exists for the cases j0 > j1 and j0 = j1
respectively. Hence, Gc∣⋃M

j=1 Vij
is strongly connected, which contradicts the

assumption. □

Proof of Theorem 6.1. For sufficient condition, given any α,β ∈ V , there

exists path γ0γ1 . . . γNγN+1 in Gc such that γ0 = α and γN+1 = β since

Gc is strongly connected. Hence, {γi → (γi+1, γi+1)}Ni=0 ⊆ Ec and thus

{γi → (γi+1, γi+1)}Ni=0 ⊆ B, where B ⊆ A∆1 is the set of allowable one-blocks.

Therefore, for each α,β ∈ A, there exists some (N + 1)-block u⟨α,β⟩, where

u
⟨α,β⟩
g ∶= γ∣g∣ for ∣g∣ ≤ N + 1. In this case, ∂s(u⟨α,β⟩) is a CPC and for

each g ∈ s(u⟨α,β⟩) with g∆1 ⊆ s(u⟨α,β⟩), u
⟨α,β⟩
g → (u⟨α,β⟩gs1 , u

⟨α,β⟩
gs2 ) = γ∣g∣ →

(γ∣g∣+1, γ∣g∣+1) ∈ B. By Proposition 4.1, there exists x⟨α,β⟩ ∈ XG such that

x∣s(u) = u. Since α,β are arbitrary, by Lemma 4.3, XG is CPC irreducible.

For necessary condition, we prove the statement by contradiction. Sup-

pose Gc is not strongly connected, then by Lemma 6.3, V = V1⋃V2 . . .⋃VM ,

where M > 1 and there exist some Vi, Vi+1 such that Vi
αiÐÐÐÐÐÐ→

(βi+1,γi+1)
Vi+1 with

βi+1 ≠ γi+1, αi → (βi+1, βi+1) ∉ Ec and αi → (γi+1, γi+1) ∉ Ec. It is seen that

G is (d, c)-reducible, which is a contradiction. □

Suppose that G = (V,Ec,Ed) is (d, c)-reducible such that c ∶= α → (β,β) ∉
Ec, d ∶= α → (β, γ) ∈ Ed, and ββ1β2 . . . βkγ is a path in Gc. We say that

H ∶= (V,Ec⋃{c},Ed ∖ {d}) is an enhanced (d, c)-reduction of G. It is seen

that XG is CPC-irreducible if and only if XH is CPC-irreducible.
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Theorem 6.4. Suppose G = (V,Ec,Ed) is an extended directed graph and

H is an enhanced (d, c)-reduction of G. Then XG is CPC-irreducible if and

only if XH is CPC-irreducible.

Proof. The proof is similar to the discussion of Theorem 5.5, thus it is omit-

ted. □

We conclude this section by improving Theorem 6.1 by considering irre-

ducible components of the extended directed graph. Let G = (V,Ec,Ed) be
an extended directed graph. Decompose V = V1⋃V2⋃⋯⋃Vn so that Gc∣Vi

is the biggest strongly connected component for eah 1 ≤ i ≤ N as Lemma 4.3

did. Define H = (Ṽ , Ẽc, Ẽd) as follows.
● Ṽ = {V1, . . . , VN}.
● Ẽc = {(Vi, Vj) ∶ ∃α ∈ Vi, β, γ ∈ Vj , α → (β, γ) ∈ Ec⋃Ed}.
● Ẽd = {(Vi, Vj , Vk) ∶ j ≠ k,∃α ∈ Vi, β ∈ Vj , γ ∈ Vk, α → (β, γ) ∈ Ed}.

Then we call H = (Ṽ , Ẽc, Ẽd) a grouping (d, c)-reduction of G. Observe

that grouping (d, c)-reduction of an extended directed graph is unique up

to permutation. Furthermore, we refer to G as the limit of (d, c)-reduction
of G which is (d, c)-irreducible.

Theorem 6.5. Let G be an extended directed graph and let H be the grouping

(d, c)-reduction of G. Then Gc is strongly connected if and only if Hc
is

strongly connected.

Proof. Define G0 ∶= G and H0 ∶= H, where Ṽ = {Vj}MGj=1 , G0 = (V,E
(0)
c ,Ed)

and H0 = (Ṽ , Ẽc
(0)

, Ẽd).
Let G ⪯ G1 ⪯ G2 . . . ⪯ GN = G, where Gi+1 is the (ai → (bi, ci), ai → (ci, ci))-

reduction of Gi with ai ∈ Ṽmi , bi ∈ Ṽni , ci ∈ Ṽki , as is defined in Definition

5.3. Herein, (ai → (bi, ci), ai → (ci, ci))-reduction of Gi means that the

(d, c)-reduction of Gi is achieved by the divergent-edge ai → (bi, ci) and

the convergent-edge ai → (ci, ci). Notably, G is well-defined since for every

(α1, α2) ∈ V × V (respectively (α1, α2, α3) ∈ V × V × V ) there is at most

one convergent-edge from α1 to α2 (respectively divergent-edge from α1 to

(α2, α3)), this makes the operation of (d, c)-reduction stop in finitely many

steps and leads to the same graph. Furthermore, if we are able to add an

edge in the sequence Gi, we will be able to add it in the other sequence G′i,
where G0 = G′0 = G. In other words, the procedure is “confluent”.

Define Hi+1 ∶=
⎧⎪⎪⎨⎪⎪⎩

Hi, if Vni = Vki ;

(Ṽ , Ẽc
(i)
⋃{Ṽmi → (Ṽki , Ṽki)}, Ẽd), if Vni ≠ Vki .
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First, consider a mapping fi ∶ E(i)c ⋃Ed → (P (V )×P (V )×P (V ))⋃(P (V )×
P (V )) defined as follows:

fi(α → (β, γ)) =
⎧⎪⎪⎨⎪⎪⎩

Vm → (Vn, Vn), if α ∈ Vm, β, γ ∈ Vn;

Vm → (Vn, Vk), if α ∈ Vm, β ∈ Vn, γ ∈ Vk, Vn ≠ Vk.

Then, it can be shown that fi is a surjection from E
(i)
c ⋃Ed to Ẽc

(i)
⋃ Ẽd

by induction on i for 0 ≤ i ≤ N .

When i = 0, the assertion holds automatically by definition of grouping

reduction.

Suppose it holds for some i ≥ 0. That is,

● for each α → (β, γ) ∈ E(i)c ⋃Ed, there exist some 1 ≤ j1, j2, j3 ≤ MG
and α ∈ Vj1 , β ∈ Vj2 , γ ∈ Vj3 such that Vj1 → (Vj2 , Vj3) ∈ Ẽc

(i)
⋃ Ẽd;

● for each Vj1 → (Vj2 , Vj3) ∈ Ẽc
(i)
⋃ Ẽd, there exist α ∈ Vj1 , β ∈ Vj2 , γ ∈

Vj3 such that α → (β, γ) ∈ E(i)c ⋃Ed.

It is left to verify the case i + 1. Note that E
(i+1)
c = E

(i)
c ⋃{αi → (γi, γi)},

where αi ∈ Ṽmi , γi ∈ Ṽki . If Vni ≠ Vki , Ẽc
(i+1) = Ẽc

(i)
⋃{Vmi → (Vki , Vki)}.

Thus, fi(αi → (γi, γi)) = Vmi → (Vki , Vki) ∈ Ẽc
(i)
. If βi = γi, then Vni = Vki ,

Ẽc
(i+1) = Ẽc

(i)
, and fi(αi → (γi, γi)) = Vmi → (Vki , Vki) ∈ Ẽc

(i)
already.

Hence the assumption holds for i + 1.
By mathematical induction, the assertion holds for all i with 1 ≤ i ≤ N .

Now, we would like to generalize the surjective mapping from edge to

path by considering the following two assertions.

Firstly, we prove that for each path δ0δ1 . . . δM+1 in Gci , there is a path

η0η1 . . . ηM+1 in Hc
i such that δ0 ∈ η0 and δM+1 ∈ ηM+1. It can be proved by

considering ηl → (ηl+1, ηl+1) ∶= fi(δl → (δl+1, δl+1)) for 0 ≤ l ≤M in the sense

that ηl → (ηl, ηl) is defined to be connected.

Secondly, if η0η1 . . . ηM+1 is a path in Hc
N , without assuming any strong

connectivity of GcN and Hc
N , there exists a sequence δ0, δ1, . . . , δM+1, where

δl ∈ ηl for all 0 ≤ l ≤M + 1 and δlνl,1νl,2 . . . νl,Kl
δl+1 is a path in GcN . It can

be shown by the following argument:

For each l, there exists δl → (δ̂l+1, δ̌l+1) ∈ E
(N)
c ⋃Ed such that fN(δl →

(δ̂l+1, δ̌l+1)) = ηl → (ηl+1, ηl+1). In this case, δl → (δ̂l+1, δ̂l+1) ∈ E
(N)
c since

GcN ∣ηl+1 is strongly connected or ηl+1 consists of a single vertex, and δl, δ̂l, δ̌l ∈
ηl. Thus, for each 0 ≤ l ≤M in G, there exists a path δlδ̂l+1νl+1,1νl+1,2 . . . νl+1,Kl+1δl+1

as is required from above.
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From argument above,Hi+1 is either a (Vmi → (Vni , Vki), Vmi → (Vki , Vki))-
reduction ofHi or identical toHi. Herein, (Vmi → (Vni , Vki), Vmi → (Vki , Vki))-
reduction means that the grouping (d, c)-reduction of Hi is accomplished

by the divergent-edge Vmi → (Vni , Vki) and the convergent-edge Vmi →
(Vki , Vki). It is because for αi → (βi, γi) with Vni ≠ Vki , there exists a

path δ0δ1 . . . δM+1 in Hc
i , where δ0 = βi, δM+1 = γi. Let ηl → (ηl+1, ηl+1) =

fi(δl → (δl+1, δl+1)) ∈ Ẽc
(i)
, where 0 ≤ i ≤ M . Then, η0η1 . . . ηM+1 is a path

in Hc
i , where η0 = Vni , ηM+1 = Vki . Hence, the assertion is satisfied.

At this point, it can be shown by contradiction thatHN =H, i.e.HN is not

(d, c)-reducible. If HN ≠ H, there exists some VmN+1 → (VnN+1 , VkN+1) ∈ Ẽd

(or VmN+1 → (VkN+1 , VnN+1) ∈ Ẽd) such that η0η1 . . . ηM+1 is a path in Hc
N ,

η0 = VnN+1 , ηM+1 = VkN+1 and VmN+1 → (VkN+1 , VkN+1) ∉ Ẽc
(N)

. Since fN ∶
E
(N)
c ⋃Ed → Ẽc

(N)
⋃ Ẽd is a surjection, there exist αN+1, βN+1, γN+1 ∈ V sat-

isfying fN(αN+1 → (βN+1, γN+1)) = VmN+1 → (VnN+1 , VkN+1) (or fN(αN+1 →
(γN+1, βN+1)) = VmN+1 → (VkN+1 , VnN+1)). Under the circumstances, there

exists a sequence δ0, δ1, . . . , δM+1, where δl ∈ ηl for all 0 ≤ l ≤ M + 1 and

δlνl,1νl,2 . . . νl,Kl
δl+1 is a path in GcN . Consider the sequence, δ−1, δ0, δ1, . . . , δM+1, δM+2,

where δ−1 = βN+1 and δM+2 = γN+1. Also, δ−1, δ0 ∈ η0, δM+1, δM+2 ∈ ηM+1, and
thus there are paths δ−1ν−1,1ν−1,2 . . . ν−1,K−1δ0 and δM+1νM+1,1νM+1,2 . . . νM+1,KM+1δM+2.

This implies αN+1 → (γN+1, γN+1) ∈ E(N)c and thus fN(αN+1 → (γN+1, γN+1)) =
VmN+1 → (VkN+1 , VkN+1) ∈ Ẽc

(N)
, leading to a contradiction.

Now we prove the theorem. For necessary condition, given any Vi, Vj

there exists a sequence δ0, δ1, . . . , δM+1, where δl ∈ ηl for all 0 ≤ l ≤M +1 and

δlνl,1νl,2 . . . νl,Kl
δl+1 is a path in GcN . Then Hc

is strongly connected.

For sufficient condition, given any α ∈ Vi ∈ Ṽ , β ∈ Vj ∈ Ṽ , since Hc
is

strongly connected, there exists a path η0η1 . . . ηM+1 such that η0 = Vi and

ηM+1 = Vj . By surjective property of path, there is a sequence δ−1, δ0, δ1, . . . , δM+1δM+2,

where δ−1,= βN+1 and δM+2 = γN+1 and there are path δl, νl,1νl,2 . . . νl,Kl
δl+1

for all −1 ≤ l ≤M + 2. It follows immediately that Gc is strongly connected.

This completes the proof. □

Example 6.6. Let X be the TSFT considered in Example 6.2. Observe

that G has three irreducible components seen as

V = V1⋃V2⋃V3, where V1 = {0,1,2}, V2 = {3,4}, V3 = {5}.
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0

1

2

3

4

5

Figure 6. The grouping (d, c)-reduction of the extended
directed graph G in Example 6.2 is an extended directed
graph H = (Ṽ , Ẽc, Ẽd) with Ṽ = {V1, V2, V3}, Ẽc =
{(V1, V2), (V2, V3)}, and Ẽd = {(V3, V1, V1)}. It is seen im-

mediately that Hc
is strongly connected.

Therefore, the grouping (d, c)-reduction of G is an extended directed graph

H that consists of three vertices, two convergent-edges, and one divergent-

edge. See Figure 6. It can be seen that the divergent-edge (V3, V1, V1) is
actually a convergent-edge (V3, V1), and H

c
is strongly connected.

7. Conclusion and Discussion

Since CPC-irreducibility of tree shifts of finite type implies the denseness

of strongly periodic points, it is natural to elucidate the decidability of

CPC-irreducible TSFTs. Theorems 5.5 and 6.1 demonstrate that CPC-

irreducibility of TSFTs is decidable. The related algorithm is referred to as

the above flowchart in Figure 7.

Whenever a considered TSFT is complicated, for instance, the alphabet

is large, or the forbidden set is small, Theorem 6.5 provides a more efficient

algorithm for determining if it is CPC-irreducible. See the below flowchart

in Figure 7. On the other hand, the following question is interesting and

remains open.

Problem 1. Is the CPC-irreducibility of sofic tree shifts decidable?
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G0 = GX Gi (d, c)-reducible

Gci strongly connected

Gi+1 = (d, c)-reduction Gi i = i + 1

X: reducible

X: irreducible

no

yes

no

yes

G0 = GX Hi = grouping (d, c)-reduction of Gi

Hi grouping (d, c)-reducible

Hi strongly connected

Gi+1 = (d, c)-reduction Hi i = i + 1

X: reducible

X: irreducible

no

yes

no

yes

Figure 7. Flowcharts of algorithms of (d, c)-reduction and
grouping (d, c)-reduction of extended directed graph (Theo-
rems 6.1 and 6.5) that demonstrate the CPC-irreducibility of
tree shifts of finite type is decidable.
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Appendix. The Complexity of Algorithm

In this appendix, we present the pseudo code of our algorithm and esti-

mate the complexity of the algorithm.

The index start from 0 for the following pseudocode.
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input : The object graph has the following data member:
graph.v: list of int
graph.ce: list of int[2]
graph.de: list of int[3]

output: CPC-irreducible or not

1 Function dcReduction(graph)
2 foundReachable = True;

3 while foundReachable do
4 foundReachable = False;

5 i = 0;
6 while i ¡ size(graph.de) do
7 divEdge = graph.de.divEdge[i] ;

8 if isReachable(divEdge[1],divEdge[2]) then
9 divEdge[1] = divEdge[2];

10 graph.de.delete(i);

11 graph.ce.append (divEdge);

12 foundReachable = True;

13 end

14 else if isReachable(divEdge[2], divEdge[1]) then
15 divEdge[2] = divEdge[1];

16 graph.de.delete(i);

17 graph.ce.append(divEdge);

18 foundReachable = True;

19 end

20 else
21 i + +;
22 end

23 end

24 end

25 end

Algorithm 1: (d,c)-reduction

Suppose there are k convergent-edges,m divergent-edges, and n vertices in

the extended directed graph. It is seen that the complexity of “isReachable”

part is at most O(m+n+k). Since we havem divergent-edges, the complexity

of our algorithm is at most

O((m+n+k) ⋅(m+(m−1)+ ...+1)) = O ((m + n + k) ⋅ m(m − 1)
2

) = O(m3).
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