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Abstract. This paper deals with the topological entropy for hom Markov

shifts TM on d-tree. If M is a reducible adjacency matrix with q irreducible
componentsM1, · · · ,Mq , we show that h(TM ) = max1≤i≤q h(TMi

) fails gener-
ally, and present a case study with full characterization in terms of the equality.

Though that it is likely the sets {h(TM ) : M is binary and irreducible} and
{h(TX) : X is a one-sided shift} are not coincident, we show the two sets share
the common closure. Despite the fact that such closure is proved to contain
the interval [d log 2,∞), numerical experiments suggest its complement contain

open intervals.
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1. Introduction

Entropy, which was introduced in 1865 by the German physicist and mathe-

matician Rudolf Clausius, plays a crucial role in different fields of science, e.g., the

information theory and ergodic theory. Such quantity describes the complexity or
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richness of a dynamical system. Let H(S) be the entropies of a family of dynamical

systems S. To examine the structure of H(S), one usually considers the fundamen-

tal properties of H(S); namely, the monotonicity, continuity and the denseness of

H(S). For some classical families of maps S which are defined in R, H(S) forms the

so-called Devil’s staircase function if the constant part of H(S) is open and dense

in the parameter space, e.g., logistic maps [11].

Before stating the main results of this work, we review some relevant results of

one-sided shifts of finite type (SFTs) XM , where M is the associated adjacency

matrix. It is known that h(XM ) is log λM , where λM is the spectral radius of

M , and that the monotonicity follows from this property. Furthermore, the strict

monotonicity holds whenever M admits the irreducibility property (Theorem 4.4.7

[9]). Precisely, let M be irreducible, 0 ≤ N ≤ M and Nk,l < Mk,l for a pair (k, l)

of indices, then h(XN ) < h(XM ). Theorem 4.4.7 [9] indicates that h(XM ) with

irreducible M is in the boundary of some constant part of the entropy function,

that is, every proper subshift of XM decreases the entropy. In addition to the

monotonicity, irreducibility is a cornerstone in the theory of topological entropy.

Let M be a reducible matrix with irreducible components M1,M2, · · ·Mq. It is

known that (Theorem 4.4.4 [9])

(1.1) h(XM ) = max
1≤i≤q

h(XMi
).

This means that

(1.2) {h(XM ) : M is binary and irreducible} = H(S),

where S is the family of the one-sided SFTs.

Novel phenomena have been revealed in the tree-shifts. Tree-shifts, which was

proposed by Aubrun and Beal [1, 2], are shift spaces defined in free semigroups.

Such shifts have received extensive attention recently since the tree-shifts exhibit

the nature structure of one- and higher-dimensional dynamical systems and are

equipped with multiple directional shift transformations. Among all, hom tree-

shifts form an important class since it was inspired by the physical models from

statistical mechanics, e.g., lattice gases and spin systems. A hom Markov tree-shift

is a nearest neighbor shift of finite type which is isotropic, that is, if a, b are two

symbols forbidden to sit next to each other in some coordinate direction, then they

are forbidden to sit next to each other in all coordinate directions. Petersen and

Salama introduce the topological entropy for tree-shifts and prove that the limit in

the definition exists, and the limit in the definition is actually the infimum [12, 13].

For the measure-theoretic results of entropy we refer the reader to [3, 10] and

references therein.

Since the hom Markov tree-shift, TM , is induced from the one-dimensional shift

XM , where M is the associated adjacency matrix (see Section 2 for more details),

it is therefore of interest to study the relations between TM and XM . Petersen and
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Salama [12] show that the topological entropy h(TM ) dominates the topological

entropy h(XM ). Ban et al. [5] demonstrate that for irreducible M , h(TM ) and

h(XM ) are equal if and only if M has the property of equal row sum (Theorem

2.1. [5]), that is, max
i

∑

j

Mi,j = min
i

∑

j

Mi,j . Although the relation of the h(TM ) and

h(XM ) is known, the structure of the entropy function of hom Markov tree-shifts

is far from being conclusive. For this purpose, the paper investigates the structure

of H(S) when S is the family of hom Markov tree-shifts.

The first result of this work is to extend Theorem 4.4.7 [9] to the case where S is

the family of hom Markov tree-shifts (Theorem 2.2). Surprisingly, (1.1) is no longer

true under such a circumstance. For example, suppose b > a ≥ 1 and 0 < l ≤ b,

consider the reducible upper triangular matrix

M(a, b; l) =

[

Ea Rl

0 Eb

]

,

where Ea ∈ {0, 1}a×a, Eb ∈ {0, 1}b×b are full matrix, and Rl ∈ {0, 1}a×b has a

constant row sum l. Theorem 3.2 reveals that

(1.3) h(TM(a,b;l)) > max{h(TEa
), h(TEb

)} = h(TEb
) = log b,

for a set of (a, b, l) ∈ N
3. The complete characterization of h(TM(a,b;l)) = h(TEb

) is

presented in Theorem 3.3. Furthermore, Theorem 3.4 extends to the case where M

has q > 2 irreducible components. We emphasize that the problem of finding all

possible values of (a, b, l) in which (1.3) holds for hom Markov tree-shifts depends

on the ‘sizes’ and ‘forms’ of the irreducible parts and the upper right corner matrix

of M (Proposition 6.1). Furthermore, the structure of the entropy function of the

hom Markov tree-shifts is not only determined by the family of TM with irreducible

M .

Since the equality (1.1) is no longer true for the family of hom Markov tree-

shift, the equality (1.2) may fail due to the fact that the collection of reducible

matrices M may produce more values of entropy. However, Theorem 4.6 together

with Corollary 4.7 show that

(1.4)

{h(TM ) : M is binary and irreducible} = {h(TX) : X is a shift space} = H(S),

where S is the set of hom Markov tree-shift and E is the closure of the set E.

The novel phenomenon indicates that the set of hom Markov tree-shifts TM with

irreducible M is the set of basic ‘building blocks’ of S for the entropy.

Let S be the family of the one-sided SFTs. As we mentioned before, h(XM ) =

log λM , where λM is the spectral radius of M . The converse is also true if M

is an aperiodic matrix. To be precise, if λ is a Perron number, then there is a

nonnegative aperiodic integral matrix whose spectral radius is λ [7, 8]. Combining

this with the fact that the set of Perron value is dense in [1,∞) we conclude that

H(S) is dense in [0,∞). However, this is not generally true if S is the family of
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hom Markov tree-shifts. Only the case for 2-tree is discussed below, and the cases

for general d-tree have a similar phenomenon. Ban et al. prove that h(TM ) = 0 or

h(TM ) ≥ 1
2 log 2 (Proposition 4.1 [5]), that is, H(S) is not dense in (0, 1

2 log 2). The

question whether H(S) is dense in [ 12 log 2,∞) arises naturally. In Theorem 5.1,

we prove that {h(TM ) : M is binary and irreducible} is dense in [log 2,∞). It is

worth pointing out that the numerical results suggest that there exist intervals in

[ 12 log 2, log 2) in which H(S) is not dense. We also note that the TM we construct in

Theorem 5.1 has the property that M is irreducible. However, the results in Section

2 reveal that the h(TM ) with reducible M may increase the values of max
1≤i≤q

h(TMi
),

where Mi is the irreducible component in the diagonal part of M , i.e., those TM
may increase the possible values of {h(TM ) : M is binary and irreducible}. Thus we
suspect that there is another way to prove more intervals less than log 2 in which

H(S) is dense. The main difficulty occurs in the study of the entropy structure of

h(TM ), where M is a reducible matrix. This question is at present far from being

solved.

2. Preliminary

2.1. Notations and definitions. First, some necessary notations and definitions

are introduced. For d ≥ 2, denote by Σ = {0, 1, · · · , d − 1}. Let the d-tree Σ∗ =

∪n≥0Σ
n be the set of all finite words on Σ, where Σn is the set all words with length

n ≥ 1 and Σ0 = {ǫ} consists of the empty word ǫ. A labeled tree t : Σ∗ → A is a

global configuration on d-tree with finite alphabet A. Given a labeled tree and a

node w ∈ Σ∗, tw is the label of t on w. Denote by ∆n = ∪n
i=0Σ

i the n-th subtree

of Σ∗. An n-block u is defined by u = t|∆n
for some labeled tree t.

For a one-dimensional shift space X = XF ⊆ AN with forbidden set F , denote by

Bn(X) the set of all feasible n-words of X. Given a shift space X, the associated

hom tree-shift TX ⊆ AΣ∗

is the set of all labeled trees t such that {twi
}i≥0 =

(tw0
, tw1

, · · · ) ∈ X for any node wi ∈ Σi, i ≥ 0. In particular, given a binary matrix

M = [Mi,j ] indexed by A, a Markov shift XM is defined by

XM =
{

x = {xi} ∈ AN : Mxi,xi+1
= 1 for i ≥ 0

}

,

and the associated hom tree-shift TM = TXM
is called a hom Markov tree-shift.

Given a hom Markov tree-shift TM , we denote by Bn(TM ) the set of n-blocks

and by p(n) = pM (n) the number of n-blocks of TM for n ≥ 0. Furthermore, if the

graph representation G of TM is specified, we write pG(n) = pM (n). The topological

entropy h(TM ) of TM is defined by

h(TM ) = lim
n→∞

log p(n)

|∆n|
,

which measures the growth rate of the number of n-blocks of TM . The existence

of the limit is proved by Petersen and Salama [12, 13]. Assume M ∈ {0, 1}k×k,

k ≥ 1. For 1 ≤ i ≤ k, denote by pM ;i(n) (or pi(n) if there is no confusion) the
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number of n-blocks u for TM with uǫ = i. For a finite sequence sn = {si}d
n

i=1 where

1 ≤ si ≤ k, 1 ≤ i ≤ dn, denote by pM ;sn(n) the number of n-blocks for TM whose

labels on the bottom layer Σn from left to right are s1, s2, · · · , sdn . If G is the graph

representation of TM , we also denote pG;sn(n) = pM ;sn(n).

Petersen and Salama [12] have demonstrated that if M is irreducible,

(2.1) lim sup
n→∞

log pi(n)

|∆n|
= h(TM )

for 1 ≤ i ≤ k; furthermore, if M is primitive,

lim
n→∞

log pi(n)

|∆n|
= h(TM )

for 1 ≤ i ≤ k.

2.2. Monotonicity of h(TM ) for irreducible M . In this subsection, the strict

monotonicity of h(TM ) for irreducible M is considered. More specifically, we will

show that if B is irreducible and A = [ai,j ]k×k > B = [bi,j ]k×k, then h(TA) > h(TB),
where A > B means ai,j ≥ bi,j for all 1 ≤ i, j ≤ k and there exist 1 ≤ i′, j′ ≤ k such

that ai′,j′ > bi′,j′ . Before showing the main result, we prove the following lemma.

Lemma 2.1. Suppose A and B ∈ {0, 1}k×k. If B is irreducible and A > B, then

there exists N ≥ 1 such that

(2.2) pA;i(N) > pB;i(N)

for 1 ≤ i ≤ k.

Proof. Let A = [ai,j ] and B = [bi,j ]. Since A > B, without loss of generality, we

assume ai∗,j∗ = 1 and bi∗,j∗ = 0 for some 1 ≤ i∗, j∗ ≤ k. Because B is irreducible,

for 1 ≤ i ≤ k, we have
∑k

j=1(B
m)i,j ≥ 1 for all m ≥ 1, and there exists n(i, i∗) ≥ 1

such that
(

Bn(i,i∗)
)

i,i∗
≥ 1. Clearly,

(

Bn(i,i∗)
)

i,i∗
· bi∗,j∗ = 0 and

(

An(i,i∗)
)

i,i∗
· ai∗,j∗ ≥ 1.

Then, it can be proven that
∑k

j=1

(

An(i,i∗)+m
)

i,j
>

∑k
j=1

(

Bn(i,i∗)+m
)

i,j
.

for all m ≥ 1. By taking N = max
1≤i≤k

{n(i, i∗) + 1},
∑k

j=1

(

AN
)

i,j
>

∑k
j=1

(

BN
)

i,j

for all 1 ≤ i ≤ k, which implies

(2.3)
|{x = (x0, x1, · · · , xN ) ∈ BN+1(XA) : x0 = i}|

> |{x = (x0, x1, · · · , xN ) ∈ BN+1(XB) : x0 = i}|
for all 1 ≤ i ≤ k.

From the irreducibility of A, for any feasible (n+1)-word x = (x0, x1, · · · , xn) ∈
Bn+1(XA),

{u ∈ TA |∆n
: uǫ = x0 and u0j = xj , 1 ≤ j ≤ n} 6= ∅.
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The case for B is also valid. Therefore, by A > B and (2.3), (2.2) follows immedi-

ately. The proof is complete. �

The following theorem shows that the strict monotonicity of h(TM ) for irreducible

M holds.

Theorem 2.2. Let A and B ∈ {0, 1}k×k. If B is irreducible and A > B, then

h(TA) > h(TB).

Proof. From Lemma 2.1, there exists N ≥ 1 such that pA;i(N) > pB;i(N) for all

1 ≤ i ≤ k. Let c = min
1≤i≤k

pA;i(N)
pB;i(N) > 1. For n ≥ 1,

pA(n+N) =
∑

1≤s1,s2,··· ,sdn≤k

pA;sn(n) ·
(

∏dn

j=1 pA;sj (N)
)

≥ ∑

1≤s1,s2,··· ,sdn≤k

pB;sn(n) ·
(

∏dn

j=1 pA;sj (N)
)

≥ ∑

1≤s1,s2,··· ,sdn≤k

pB;sn(n) · cd
n ·

(

∏dn

j=1 pB;sj (N)
)

= cd
n · pB(n+N).

Therefore,

h(TA) = lim sup
n→∞

log pA(n+N)
|∆n+N |

≥ lim sup
n→∞

log(cd
n
·pB(n+N))

|∆n+N |

= (d−1) log c
dN+1 + h(TB)

> h(TB).
The proof is complete. �

Remark 2.3. Theorem 2.2 is analogous to Theorem 4.4.7 [8] for one-dimensional

irreducible SFTs. We also emphasize that, as one-dimensional reducible SFTs,

the strict monotonicity of h(TM ) for reducible M is not true, that is, if B is

reducible and A > B, it could happen that h(TA) = h(TB). For example, let

A =





1 1 0
0 1 1
0 1 1



 and B =





1 0 0
0 1 1
0 1 1



. From Theorem 3.3, it can be checked

immediately that h(TA) = h(TB) = log 2.

3. h(TM ) for reducible M

Let the irreducible components of reducible M are M1,M2, · · · ,Mq. In one-

dimensional reducible shifts of finite type, it is known that h(XM ) = max
1≤i≤q

{h(XMi
)}

and h(XMi
) is equal to the logarithm of the spectral radius of Mi. However, the
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preceding equality is no longer true for the hom Markov tree-shifts. Our results

below demonstrate rather strikingly that the criterion of the equality depends on

the set of all irreducible components of M and the connections among them. In

this section, we consider the case that all irreducible components of M are of the

form Mi = Eni
, where En is the n × n matrix whose all entries are 1. Clearly,

max
1≤i≤q

{h(TMi
)} = max

1≤i≤q
{ni}.

3.1. Reducible M with two irreducible components. This subsection con-

siders a certain class of the reducible M = M(a, b; l) with exactly two irreducible

components Ea and Eb. Our goal is to provide checkable necessary and sufficient

conditions to determine whether h(TM ) = max {h(TEa
), h(TEb

)}.
For any a, b ≥ 1 and 0 ≤ l ≤ b, consider the reducible matrix

(3.1) M = M(a, b; l) =

[

Ea Rl

O Eb

]

,

where O is b×a zero matrix and Rl ∈ {0, 1}a×b has the same row sum l. Clearly, Ea

and Eb are the irreducible components of M . Notably, for a ≥ b, the relationship

between h(TM(a,b;l)) and max{h(TEa
), h(TEb

)} = log a is straightforward as below.

If a ≥ b and l = 0, it is clear that h(TM ) = log a; if a ≥ b and 1 ≤ l ≤ b, we can

check that p(n) ≥ a|∆n−1| · (a+ l)d
n

, and then h(TM ) > log a. Therefore, we always

assume that b > a. The following lemma is crucial to obtain the main results.

Lemma 3.1. Suppose α > 0, β ≥ 0 and d ≥ 2. Let f(x) = (αx+ β)
d
and

χn+1 = f(χn), n ≥ 0, with χ0 = 1. Let the largest real root and second largest real

root of f(x) = x on [1,∞) be x+ and x− respectively (if x+ exists but x− does not

exist, let x− = x+). Then, for α+ β > 1, {χn} is increasing, and

(a) if x+ does not exist or x+ < 1, then {χn} approaches ∞ as n tends to ∞,

(b) if x+ ≥ 1, then {χn} approaches x− as n tends to ∞.

Proof. First, we have f ′(x) > 0 for x ≥ 1. Since α + β > 1, we have χ1 > χ0 = 1

and then {χn} is increasing. For x+ does not exist or x+ < 1, we have f(x) > x for

x ≥ 1 and then f ′(x) > 1 for x ≥ 1, which implies χn+2−χn+1 = f(χn+1)−f(χn) >

χn+1 − χn for n ≥ 0. Hence, χn → ∞ as n → ∞.

Let g(x) = f(x) − x. It can be verified that there exists at most one real root

of g′(x) = 0 on [1,∞), and then there exist at most two real roots of g(x) = 0 on

[1,∞). When x+ ≥ 1, x− is the real root of f(x) = x that is closest to 1 on [1,∞).

Since χn is increasing, it can be shown that χn approach x− as n → ∞. The proof

is complete.

�

Now, for b > a, the following theorem provides a complete classification of

whether h(TM(a,b;l)) = log b.
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Theorem 3.2. Suppose M = M(a, b; l) is defined as (3.1) with b > a and TM is

defined on d-tree, d ≥ 2. Let the maximal real root of f(x) ≡
(

a
bx+ l

b

)d
= x be x+.

(a) When a+ l ≤ b, h(TM ) = log b.

(b) When a+ l > b,

(i) if x+ does not exist or x+ < 1, then h(TM ) > log b,

(ii) if x+ ≥ 1, then h(TM ) = log b.

Proof. First, if a+ l ≤ b, the estimation b|∆n| ≤ p(n) ≤ (a+b) ·b|∆n| can be verified.

Then, h(TM ) = log b follows immediately.

For a+ l > b, it follows from [12] that for 1 ≤ i ≤ a+ b and n ≥ 0, we have

pi(n+ 1) = (Mp(n))
d
i

where p(n) = [p1(n), p2(n), · · · , pa+b(n)]
T
. By the definition of M(a, b; l), p1(n) =

p2(n) = · · · = pa(n) and pa+1(n) = pa+2(n) = · · · = pa+b(n) for n ≥ 1. Then, it

can be verified that

pi(n+ 1) =







(apa(n) + lpa+b(n))
d

for 1 ≤ i ≤ a,

(bpa+b(n))
d
= b|∆n+1|−1 for a+ 1 ≤ i ≤ a+ b,

with pi(0) = 1 for all 1 ≤ i ≤ a+ b. Also,

p(n) = apa(n) + bpa+b(n) = apa(n) + b|∆n|.

Hence,

(3.2) h(TM ) = max

{

lim sup
m→∞

log pa(m)

|∆m| , log b

}

.

Let χn ≡ pa(n)/pa+b(n) = pa(n)/b
|∆n|−1 for n ≥ 0. Thus, we have

χn+1 =

(

a

b
χn +

l

b

)2

with χ0 = 1. First, if {χn} is bounded, it can be proven that

lim sup
m→∞

log pa(m)

|∆m| = lim sup
m→∞

log pa+b(m) + logχm

|∆m| = log b.

Then, h(TM ) = log b.

Secondly, we aim to show that if χn → ∞ as n → ∞, then h(TM ) > log b. It is

clear that χn+1 ≥
(

a
bχn

)d
, which implies that for m ≥ 1,

χn+m ≥ (a/b)(d
m+1−d)/(d−1) · χdm

n .

Then, for n ≥ 1, it can be verified that

(3.3) lim sup
m→∞

logχn+m

|∆n+m| ≥ d−n−1((d− 1) logχn − d log(b/a)).
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Therefore, for n ≥ 1,

lim sup
m→∞

log pa(m)
|∆m| = lim sup

m→∞

log pa+b(m)·χm

|∆m|

= log b+ lim sup
m→∞

logχm

|∆m|

= log b+ lim sup
m→∞

logχn+m

|∆n+m|

≥ log b+ d−n−1((d− 1) logχn − d log(b/a)),

which yields if χn → ∞ as n → ∞, then

h(TM ) = lim sup
m→∞

log pa(m)

|∆m| > log b.

Applying Lemma 3.1 yields Case(b), which completes the proof.

�

Notably, by (3.2) and (3.3), if there exist N ≥ 1 such that χN > (b/a)d/(d−1),

then h(TM ) > log b; otherwise, h(TM ) = log b. Table 1 provides numerical results

for each case in Theorem 3.2.
Case in Thm 3.2 d a b l x+ h(TM ) log b

(a) 3 2 3 1 1 0.477121 0.477121
(b)(i) 3 2 3 2 -3.21353 0.538423 0.477121
(b)(ii) 3 2 4 1 2.03407 0.60206 0.60206

Table 1.

Table 2 is a list of M = M(1, 5; 5) whose h(TM ) = log 5 for d = 2 and h(TM ) >

log 5 for 3 ≤ d ≤ 5 numerically.

Case in Thm 3.2 d a b l x+ h(TM ) log b
(b)(ii) 2 1 5 5 13.09017 0.69897 0.69897
(b)(i) 3 1 5 5 -18.136825 0.699188 0.69897
(b)(i) 4 1 5 5 does not exist 0.702073 0.69897
(b)(i) 5 1 5 5 -13.40247 0.706288 0.69897

Table 2.

Notably, we conjecture that for a given binary matrix M , h(TM ) increases with d.

Up to now, it is still open.

In the following, a more detailed discussion for the case d = 2 of Theorem 3.2 is

provided.

Theorem 3.3. Suppose M = M(a, b; l) is defined as (3.1) with b > a and TM is

defined on 2-tree. When a+ l ≤ b, h(TM ) = log b. When a+ l > b,

(a) if b2 − 4al < 0, then h(TM ) > log b,

(b) if b2 − 4al > 0

(i) and b2 − 2al − 2a2 < 0, then h(TM ) > log b,

(ii) and b2 − 2al − 2a2 ≥ 0, then h(TM ) = log b,

(c) if b2 − 4al = 0
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(i) and a ≤ l, then h(TM ) = log b,

(ii) and a > l, h(TM ) > log b.

Proof. Let f(x) =
(

a
bx+ l

b

)2
. By solving f(x) = x, we have

x =
b2 − 2al ± b

√
b2 − 4al

2a2
.

In Case (a), it is clear that x+ does not exist. In Case (b), there are exactly two

real roots of f(x) = x. By making further discussing, if b2 − 2al − 2a2 < 0, x = 1

is on the right hand side of both real roots; if b2 − 2al − 2a2 = 0, x = 1 is between

the two real roots; if b2 − 2al − 2a2 > 0, x = 1 is on the left hand side of both two

real roots. In Case (c), the only real root of f(x) = x is x = x+ = l/a. We have

that when a ≤ l, x+ ≥ 1, and when a > l, x+ < 1.

Therefore, the results in this theorem follow by Theorem 3.2. The proof is

complete. �

Table 3 provides numerical results of each case in Theorem 3.3.

Case in Thm 3.3 a b l h(TM ) log b
(a) 2 3 2 0.517166 0.477121

(b)(i) 2 3 1 0.477121 0.477121
(b)(ii) 2 4 1 0.60206 0.60206
(c)(i) 2 4 2 0.60206 0.60206
(c)(ii) 9 12 4 1.099264 1.079181

Table 3.

3.2. Reducible M with more irreducible components. In this section, we

extend the results of reducible matrixM with two irreducible components to general

cases, that is, the reducible matrix M has q ≥ 2 irreducible components. First,

we set up notation and terminology. For q ≥ 2, let aq = (a1, a2, · · · , aq) with

aq > ai ≥ 1 for 1 ≤ i ≤ q − 1, and lq = {li,j : i + 1 ≤ j ≤ q, 1 ≤ i ≤ q − 1} with

0 ≤ li,j ≤ aj . We consider the reducible matrix

(3.4) M = M(aq; lq) =























Ea1
Rl1,2 Rl1,3 · · · Rl1,q

O Ea2
Rl2,3 · · · Rl2,q

O O Ea3
· · · Rl3,q

...
...

...
. . .

...
O O O · · · Eaq























with q irreducible components and assume TM is hom Markov tree-shift on d-

tree, in which Rli,j is a matrix all of whose row sums are li,j . Let b0 = 0 and

bj = Σj
i=1ai, 1 ≤ j ≤ q. From [12], we have pi(0) = 1, 1 ≤ i ≤ bq, and for n ≥ 1,
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pbi+1(n) = pbi+2(n) = · · · = pbi+1
(n), 0 ≤ i ≤ q − 1. More precisely, for 1 ≤ i ≤ q,

(3.5) pbi(n+ 1) =



aipbi(n) +

q
∑

j=i+1

li,j · pbj (n)





d

,

for n ≥ 0. In particular, pbq (n) = a
|∆n|−1
q for n ≥ 0. Therefore,

(3.6) h(TM ) = max
1≤i≤q

{

lim sup
m→∞

log pbi(m)

|∆m|

}

,

where

lim sup
m→∞

log pbq (m)

|∆m| = log aq.

Given 1 ≤ i ≤ q − 1, let

χ(i)
n ≡ pbi(n)

pbq (n)
=

pbi(n)

a
|∆n|−1
q

,

for n ≥ 0. Clearly, χ
(i)
0 = 1 for 1 ≤ i ≤ q−1. It can be verified that for 1 ≤ i ≤ q−1,

(3.7) χ
(i)
n+1 =

1

adq



aiχ
(i)
n +

q
∑

j=i+1

li,jχ
(j)
n





d

,

for n ≥ 0.

In the following theorem, a necessary and sufficient condition for determining

whether h(TM(aq ;lq)) = log aq is provided.

Theorem 3.4. Suppose M = M(aq; lq), q ≥ 2, is defined as (3.4) and TM is defined

on d-tree. If there exist 1 ≤ i ≤ q − 1 and n ≥ 1 such that χ
(i)
n > (aq/ai)

d/(d−1),

then h(TM ) > log aq; otherwise, h(TM ) = log aq.

Proof. By (3.7), for 1 ≤ i ≤ q, it is seen that χ
(i)
n+1 ≥

(

ai

aq
χn

)d

, n ≥ 0. As (3.3), it

can be established that

(3.8) lim sup
m→∞

logχ
(i)
n+m

|∆n+m| ≥ d−n−1
[

(d− 1) logχ
(i)
n − d log(aq/ai)

]

.

Then, for 1 ≤ i ≤ q − 1 and n ≥ 1, we have

lim sup
m→∞

log pbi
(m)

|∆m| = lim sup
m→∞

log pbq (m)·χ(i)
m

|∆m|

= log aq + lim sup
m→∞

logχ(i)
m

|∆m|

= log aq + lim sup
m→∞

logχ
(i)
n+m

|∆n+m|

≥ log aq + d−n−1
[

(d− 1) logχ
(i)
n − d log(aq/ai)

]

.

Therefore, by (3.6), the result follows straightforwardly. The proof is complete. �
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In the following, we consider the reducible matrix M as in (3.4) with q = 3. Let

M =





Ea1
Rl1,2 Rl1,3

O Ea2
Rl2,3

O O Ea3



 .

In particular, when a1 + l1,2 + l1,3 > a3 and a2 + l2,3 > a3, by Lemma 3.1, both

{χ(1)
n } and {χ(2)

n } are increasing, and then it will be simpler to determine whether

h(TM ) = log a3 or not. We provide more explicit and checkable conditions in the

following theorem.

Theorem 3.5. Suppose M = M(a1, a2, a3; l1,2, l1,3, l2,3) and TM is defined on 2-

tree. Let the largest real root and second largest real root of f(x) ≡
(

a2

a3
x+

l2,3
a3

)2

=

x on [1,∞) be x+ and x− respectively (if x+ exists but x− does not exist, let

x− = x+). For a1 + l1,2 + l1,3 > a3 and a2 + l2,3 > a3,

(a) when x+ does not exist or x+ < 1, h(TM ) > log a3.

(b) when x+ ≥ 1, let the maximal real root of

g(x) ≡
(

a1
a3

x+
l1,2
a3

x− +
l1,3
a3

)2

= x

be x′
+,

(i) if x′
+ does not exist or x′

+ < 1, then h(TM ) > log a3,

(ii) if x′
+ ≥ 1, then h(TM ) = log a3.

Proof. Let M ′ =

[

Ea2
Rl2,3

O Ea3

]

. By Theorem 3.2, we have h(TM ) ≥ h(TM ′) >

log a3 when x+ does not exist or x+ < 1. When x+ ≥ 1, by Lemma 3.1 and

Theorem 3.2, {χ(2)
n } approaches x− as n → ∞ and h(TM ′) = log a3. Furthermore,

g(x) is well-defined when x+ ≥ 1.

For Case (b)(i), consider

gm(x) ≡
(

a1
a3

x+
l1,2
a3

χ(2)
m +

l1,3
a3

)2

for m ≥ 0. Let the maximal real root of gm(x) = x be x′
+(m). Since {χ(2)

n }
approaches to x− increasingly as n → ∞, it can be shown that if x′

+ does not

exist, then there exists N ≥ 1 such that x′
+(m) does not exist for m ≥ N ; if

x′
+ < 1, then there exists N ≥ 1 such that x′

+(m) < 1 for m ≥ N . It is clear

that χ
(1)
n+1 ≥ gm(χ

(1)
n ) for n ≥ m. By Lemma 3.1, it can be verified that {χ(1)

n }
approaches ∞ as n tends ∞. Therefore, from Theorem 3.4, h(TM ) > log a3.

For Case (b)(ii), let ωn+1 = g(ωn), n ≥ 0, with ω0 = 1. By Lemma 3.1, {ωn} is

bounded. Since χ
(1)
n ≤ ωn, n ≥ 0, {χ(1)

n } is bounded, which yields h(TM ) = log a3.

The proof is complete. �

Table 4 provides numerical results for each case in Theorem 3.5.
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Case in Thm 3.5 a1 a2 a3 l1,2 l1,3 l2,3 h(TM ) log a3
(a) 1 2 3 1 2 2 0.517166 0.477121

(b)(i) 2 1 5 1 3 5 0.703385 0.69897
(b)(ii) 1 1 6 1 5 6 0.778151 0.778151

Table 4.

4. Relative denseness of entropy for irreducible Markov hom

tree-shift

This section is devoted to the relative denseness of the sets

(4.1) H(d) = {h(TM ) : TM is on d-tree and M is binary} ,

and

(4.2) H(d)
irr = {h(TM ) : TM is on d-tree, and M is binary and irreducible} ,

in the set of entropies of all hom tree-shift. More specifically, we first demonstrate

that (4.1) and (4.2) shares a common closure and then show the closure coincides

with the closure of H(S), where S denotes the the collection of all hom tree-shifts.

To this end, we prove that for every hom Markov tree-shift TM , there exists a

sequence of irreducible matrices MN such that h(TMN
) converges to h(TM ). Equiv-

alently, for every hom Markov tree-shift TG induced by a directed graph G, there

exists a sequence of strongly connected graphs GN (i.e., for all different vertices a, b

in GN , there is a path from a to b), which is some component of G(N) defined in

(4.4) such that h(TGN
) converges to h(TG). In summary, the construction of TGN

is summarized in the following steps:

(1) Summarize the graph representation of a hom Markov tree-shift by means

of its component graph to extract the subtrees of components, each of which

admits exactly one vertex with zero indegree.

(2) Modify the subgraphs of the original graph restricted on each of the sub-

trees of components to generate the desired sequence of strongly connected

graphs.

For the convenience of the reader, each step of the construction of G(N) is illustrated

in Figure 1.

Let M ∈ {0, 1}|A|×|A| be a essential adjacency Matrix indexed by A with irre-

ducible decomposition as

(4.3) M =















M1,1 R1,2 R1,3 · · · R1,q

O M2,2 R2,3 · · · R2,q

O O M3,3 · · · R3,q

...
. . .

...
O O O · · · Mq,q,














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where Mi,i is a qi × qi irreducible submatrix indexed by Ai = {ai;j : 1 ≤ j ≤ qi}.
Define

Ni =











1 if Mi,i = O,

min

{

N ∈ N :
N
∑

j=1

[(Mi,i)
j ]a,b ≥ 1, ∀a, b ∈ Ai

}

otherwise.

Construction of G(N) Let G = (V,E) be the graph representation of TM defined

as follows.
{

V = A,

E = {(a, b) ∈ V × V : Ma,b = 1, ∀a, b ∈ A}.
Step 1. Consider the graph G = (V,E) of G, which is defined as

{

V = {Ai : 1 ≤ i ≤ q},
E = {(Ai,Aj) ∈ V ×V : i 6= j, Ri,j 6= O}.

Suppose I (respectively, T) are vertices in G whose indegrees (respectively, outde-

gree) are zeros. Without loss of generality, we assume I ∩ T = ∅, for Ai ∈ I ∩ T

corresponds to an isolated component in G, which can be separated from the be-

ginning of the discussion. For each Ai∗ ∈ I, define the restriction Gi∗ = (Vi∗ ,Ei∗)

of G as
{

Vi∗ = {Ai∗} ∪ {Ai : ∃ a path in G from Ai∗ to Ai},
Ei∗ = E ∩ (Vi∗ ×Vi∗),

in which Ai∗ is the only vertex with zero indegree. Define the graphs Gi∗ =

(Vi∗ , Ei∗) as






Vi∗ =
⋃

Ai∈Vi∗

Ai,

Ei∗ = E ∩ (Vi∗ × Vi∗).

Step 2. For each N ≥ 1, define the graph of components G
(N)
i∗ = (V

(N)
i∗ , E

(N)
i∗ ) as

follows














































































































V
(N)
i∗ = V

(N)
i∗,1 ∪ V

(N)
i∗,2 ∪ V

(N)
i∗,3

= (Vi∗ \ ∪Ai∈TAi)× {i∗} × {0}
∪{(a, i∗, r) : a ∈ Vi∗ ∩ Ai,Ai ∈ T, 0 ≤ r ≤ 2N, ∃ a walk b−1b0 · · · br−1a in G,

b−1 ∈ Vi∗ \ Ai, bj ∈ Ai, ∀ 0 ≤ j ≤ r − 1}
∪{i∗} × {0, 1, · · · , N − 1}

E
(N)
i∗ =E

(N)
i∗,1 ∪ E

(N)
i∗,2 ∪ E

(N)
i∗,3 ∪ E

(N)
i∗,4 ∪ E

(N)
i∗,5 ∪ E

(N)
i∗,6

={((a, i∗, 0), (b, i∗, 0)) ∈ V
(N)
i∗,1 × V

(N)
i∗,1 : (a, b) ∈ Ei∗}

∪{((a, i∗, 0), (b, i∗, 0)) ∈ V
(N)
i∗,1 × V

(N)
i∗,2 : (a, b) ∈ Ei∗}

∪{((a, i∗, r), (b, i∗, r + 1)) ∈ V
(N)
i∗,2 × V

(N)
i∗,2 : (a, b) ∈ Ei∗ , 0 ≤ r < 2N}

∪{((a, i∗, 2N), (i∗, 0)) ∈ V
(N)
i∗,2 × V

(N)
i∗,3 }

∪{((i∗, r), (i∗, r + 1)) ∈ V
(N)
i∗,3 × V

(N)
i∗,3 : 0 ≤ r < N − 1}

∪{((i∗, N − 1), (ai∗;1, i
∗, 0)) ∈ V

(N)
i∗,3 × V

(N)
i∗,1 }

.
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Finally, define

(4.4) G(N) = (V (N), E(N)) :=
⋃

Ai∗∈I

G
(N)
i∗ .

This sequence of graphs G(N) corresponds to an associated sequence of entropies

h(T (N)
G ) converging to h(TG).

Remark 4.1. A few remarks on the construction of G(N) are noteworthy. In Step

1, it follows from the irreducible decomposition that G admits no cycles and thus

is composed of oriented trees. In Step 2, V
(N)
i∗,1 is simply comprised of the vertices

which do not lie in the component with zero outdegree. Secondly, the vertices in

V
(N)
i∗,2 are essentially multiple copies of the vertices lying in the component with

zero outdegree, which are arranged in a pipeline with (2N + 1) phases so that the

indegree and the outdegree of each vertex are at least one. Finally, V
(N)
i∗,3 entailing

V
(N)
i∗,2 consists of merely N dummy vertices for an extra extension so as to render

the graph a strongly connected graph.

Example 4.2. An example is provided in Figure 1, in which the matrix M is given

in Figure 1(a) and the corresponding illustration of each graph is shown in Figure

1(b), 1(c), 1(d), 1(e), and 1(f). The components in I are highlighted in green, while

the ones in T are highlighted in blue.

Proposition 4.3. Suppose N ≥ maxi Ni and n ≤ N . Then,

(1) For each a ∈ A, there exist i∗ ∈ I and 0 ≤ r0 ≤ maxi Ni such that pG;a(n) ≤
pG(N);(a,i∗,r0)(n).

(2) pG(N)(N) ≤ pG(N) · (3N + 2) · |I|.

Proof. Suppose f : V (N) → (A ∪ I) is defined such that f(a, i∗, r) = a and that

f(i∗, r) = i∗. We could further define an induced map f∗ : Bn(TG(N)) → (A∪ I)∆n

for all n ≥ 0 such that (f∗(v))g = f(vg).

(1) To prove this, it is sufficient to show that for every u ∈ Bn(TG), there exists

v(u) ∈ Bn(TG(N)) such that f∗(v(u)) = u and that (v(u))ǫ = (uǫ, i
∗, r0) for some

r0 depending only on uǫ. We prove the claim by induction. For the the case

n = 0, the induction hypothesis holds naturally, since if u = a, then there exist,

by definition of Ni and the formulation above, Ai∗ ∈ I and 0 ≤ r0 ≤ maxi Ni such

that v(u) = (a, i∗, r0). We suppose the induction hypothesis holds for n and u ∈
Bn+1(TG) is given. For the case where n+1 ≤ N , we construct v(u) ∈ Bn+1(Tn+1)

satisfying f∗(v(u)) = u and (v(u))ǫ = (uǫ, i
∗, r0) with 0 ≤ r0 ≤ maxi Ni. It follows

from the induction hypothesis that there exists v(u|∆n
) ∈ Bn(TG(N)) satisfying

f∗(v(u|∆n
)) = u|∆n

and (v(u|∆n
))ǫ = (uǫ, i

∗, r0) with 0 ≤ r0 ≤ maxi Ni. Since

n+ 1 ≤ N , (v(u|∆n
))g has the form (a, i∗, r) with r0 ≤ r ≤ 2 ·maxi Ni − 1 and we
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A1 A2 A3 A4 A5 A6 A7

a1;1 a1;2 a2;1 a3;1 a4;1 a5;1 a6;1 a7;1 a7;2 a7;3




































































A1
a1;1 0 1 0 1 0 0 0 0 0 0

a1;2 1 0 0 1 0 0 0 0 0 0

A2 a2;1 0 0 1 0 1 0 0 0 0 0

A3 a3;1 0 0 0 0 0 1 0 1 0 0

A4 a4;1 0 0 0 0 0 0 0 0 0 1

A5 a5;1 0 0 0 0 0 0 1 0 0 0

A6 a6;1 0 0 0 0 0 0 1 0 0 0

A7

a7;1 0 0 0 0 0 0 0 0 0 1

a7;2 0 0 0 0 0 0 0 1 0 0

a7;3 0 0 0 0 0 0 0 0 1 0

(a) Adjacency matrix M

a1;1 a1;2 a2;1

a3;1 a4;1

a5;1

a6;1 a7;1

a7;2

a7;3

(b) Illustration of G = (V,E)

A1 A2

A3 A4

A5

A6 A7

(c) Illustration of G = (V,E)

A1 A2

A3 A4

A5

A6 A7 A7

(d) Illustration of Gi∗ = (Vi∗ ,Ei∗)

a1;1 a1;2 a2;1

a3;1 a4;1

a5;1

a6;1

a7;1

a7;2

a7;3

a7;1a7;2

a7;3

(e) Illustration of Gi∗(Vi∗ , Ei∗)

(a1;1, 1, 0) (a1;2, 1, 0) (a2;1, 1, 0)

(a3;1, 1, 0) (a4;1, 1, 0)
(a5;1, 1, 0)

(a6;1, 1, 0)

(a6;1, 1, 1)

(a6;1, 1, 2)

(a6;1, 1, 3)

(a6;1, 1, 4)

(a6;1, 1, 5)

(a7;1, 1, 0)

(a7;3, 1, 1)

(a7;2, 1, 2)

(a7;1, 1, 3)

(a7;3, 1, 4)

(a7;2, 1, 5)

(a7;3, 1, 0)

(a7;2, 1, 1)

(a7;1, 1, 2)

(a7;3, 1, 3)

(a7;2, 1, 4)

(a7;1, 1, 5)

(1, 0)

(1, 1)

(2, 0)

(2, 1)

G
(2)
1 G

(2)
2

(f) Illustration of G(N) = (V (N), E(N))

Figure 1. Illustration of construction of G(N)

may define v(u) as follows:

(v(u))g :=











(v(u|∆n
))g if |g| ≤ n,

(ug, i
∗, 0) if g = g′w, |g′| = n, v(u|∆n

)g′ = (a, i∗, 0), a ∈ Ai,Ai /∈ T,

(ug, i
∗, r + 1) if g = g′w, |g′| = n, v(u|∆n

)g′ = (a, i∗, r), a ∈ Ai,Ai ∈ T.
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It is clear that v(N) ∈ Bn+1(TG(N)), that f∗(v(u)) = u, and that r0 depends solely

on uǫ. Hence, the claim holds for all 0 ≤ n ≤ N .

(2) We subdivide BN (TG(N)) into the following four disjoint subsets, and estimate

the cardinality of each one.

BN (TG(N)) =S1 ∪ S2 ∪ S3 ∪ S4

={v ∈ BN (TG(N)) : vǫ = (a, i∗, 0), a ∈ Ai,Ai /∈ T}
∪ {v ∈ BN (TG(N)) : vǫ = (a, i∗, r), a ∈ Ai,Ai ∈ T, 0 ≤ r ≤ N}
∪ {v ∈ BN (TG(N)) : vǫ = (a, i∗, r), a ∈ Ai,Ai ∈ T, N + 1 ≤ r ≤ 2N}
∪ {v ∈ BN (TG(N)) : vǫ = (i∗, r), 0 ≤ r ≤ N − 1}.

Note that if v ∈ S1, f
∗(v) ∈ BN (TG). Furthermore, given u ∈ BN (TG),

|{v ∈ S1 : f∗(v) = u}| ≤ |I|.

We have

(4.5) |S1| ≤ |I| · |pG(N)|.

The estimate of S2 is similar to S1. If v ∈ S2, f
∗(v) ∈ BN (TG). On the other

hand, from the definition of V
(N)
i∗,2 it follows that

|{v ∈ S2 : f∗(v) = u}| ≤ |I| · (N + 1).

Thus, we obtain

(4.6) |S2| ≤ |I| · (N + 1) · |pG(N)|.

As for S3, every v ∈ S3 has the form in Figure 2. In particular, f∗(v|∆2N−r
) ∈

B2N−r(TG). Also, vg = v′g for all |g| > 2N − r if v, v′ ∈ BN (TGN
), vǫ = (a, i∗, r),

v′ǫ = (b, i∗, r). Hence,

(4.7)

|S3| =
∑

Ai∗∈I

2N
∑

r=N+1

∑

a∈Ai∗

pG(N);(a,i∗,r)(2N − r)

=
∑

Ai∗∈I

2N
∑

r=N+1

∑

a∈Ai∗

pG;a(2N − r)

=
∑

Ai∗∈I

2N
∑

r=N+1

∑

a∈Ai∗

pG(2N − r)

≤ |I| ·N · pG(N).

Finally, every v ∈ S4 has the form in Figure 3. In particular, f∗((σgv)|∆r
) ∈

Br(TG) with vg = ai∗;1 if |g| = N − r. Also, v|∆N−r
= v′|∆N−r

if vǫ = v′ǫ = (i∗, r).

On the other hand, since G is essential, for every 0 ≤ r ≤ N − 1 there is an walk

air;jrair+1;jr+1
· · · aiN−1;jN−1

ai∗;1 in G. Hence, we are able to define u(v) ∈ BN (TG),
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(i∗, r −N − 1)

(i∗, r −N) (i∗, r −N)

(b
s
N−r−1
1

, i∗, 2N − 1)

(i∗, 0) (i∗, 0)

(i∗, 1) (i∗, 1) (i∗, 1) (i∗, 1)

(i∗, r −N − 1)

(i∗, r −N) (i∗, r −N)

(b
s
N−r−1
2

, i∗, 2N − 1)

(i∗, 0) (i∗, 0)

(i∗, 1) (i∗, 1) (i∗, 1) (i∗, 1)

(bǫ, i
∗, r)

(bs1 , i
∗, r + 1) (bs2 , i

∗, r + 1)

· · ·

·
·

·

·
·
·

·

·

·

·

·

·

Figure 2. N -block v ∈ S3

(i∗, N − 1)

(ai∗;1, i
∗, 0) (ai∗;1, i

∗, 0)

u1 u2

(i∗, N − 1)

(ai∗;1, i
∗, 0) (ai∗;1, i

∗, 0)

u
d
N−r

−1
u
d
N−r

(i∗, r)

(i∗, r + 1) (i∗, r + 1)
·
·
·

·
·
·

Figure 3. N -block v ∈ S4

as illustrated in Figure 4, such that

(u(v))g =

{

air+|g|;jr+|g|
if 0 ≤ |g| ≤ N − r − 1,

f(vg) otherwise.

Note that it follows immediately from the definition that if vǫ = v′ǫ yet v 6= v′, then

u(v) 6= u(v′). Hence,

(4.8)

|S4| =
∑

Ai∗∈I

N−1
∑

r=0

pG(N);(i∗,r)(N)

=
∑

Ai∗∈I

N−1
∑

r=0

(pG(N);(ai∗,1;i∗,0)
(r))d

N−r

≤
∑

Ai∗∈I

N−1
∑

r=0

pG;air ;jr
(N)

≤ |I| ·N · pG(N).

Combining (4.5), (4.6), (4.7) with (4.8) yields the result in (2). The proof is then

completed. �

Proposition 4.4. For every essential graph G, we have

(4.9)
logmaxa pG;a(n)

dn+1/(d− 1)
=

n
∑

i=0

d− 1

di+1
log γn,

for some 1 ≤ γi ≤ |A|d. Moreover,
logmaxa pG;a(n)

dn+1/(d−1) tends to h(TG) increasingly.
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ai∗,jN−1

ai∗;1 ai∗;1

f∗(u1) f∗(u2)

ai∗,jN−1

ai∗;1 ai∗;1

f∗(udN−r
−1) f∗(udN−r

)

ai∗;jr

ai∗;jr+1
ai∗;jr+1

·
·
·

·
·
·

Figure 4. The corresponding N -block u(v) of v ∈ S4

Proof. Suppose M ∈ {0, 1}|A|×|A| be the adjacency matrix of G and write pG(n) =

[pG;a1
(n), pG;a2

(n), · · · , pG;a|A|
(n)]T ∈ R

|A|. It is known (see [4]) that






pG(n) =
d
⊙

i=1

(MpG(n− 1)),

pG(0) = [1, 1, · · · , 1]T ,
where ⊙ denote the entrywise product of the column vectors. We claim that for

any given positive real sequence {γi}∞i=0, the system










pG(n) =
1
γn

d
⊙

i=1

(MpG(n− 1)),

pG(0) = [ 1
γ0
, 1
γ0
, · · · , 1

γ0
]T ,

has the following property:

pG(n) = γdn

0 γdn−1

1 · · · γd0

n pG(n), ∀n ≥ 0.

We prove the claim by induction. The case n = 0 is immediate. We now verify the

case n = N + 1 by assuming the induction hypothesis holds for n = N . Indeed,

pG(N + 1) =
d
⊙

j=1

(MpG(N))

=
d
⊙

j=1

(MγdN

0 γdN−1

1 · · · γd0

N pG(N))

= γdN+1

0 γdN

1 · · · γd1

N

d
⊙

j=1

(MpG(N))

= γdN+1

0 γdN

1 · · · γd1

N γd0

N+1pG(N + 1).

Thus, the claim holds by induction.

Next, we show by induction on n that if γ0 = 1 and γn = max⊙d
i=1(MpG(n−1))

is chosen iteratively, then

(4.10) 1 ≤ max
1≤i≤|A|

[⊙d
i=1(MpG(n))]i ≤ |A|d,

for all n ≥ 0. As for the case n = 0, (4.10) is attained from direct calculation.

Now suppose (4.10) holds for n = N . By the definition of γN+1, one deduces

that max1≤i≤|A|[pG(N + 1)]i = 1. Since every vertex in G has both indegree and

outdegree at least 1, M is also essential. Thus, max1≤i≤|A|[MpG(N +1)]i ≥ 1 and
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max1≤i≤|A|[⊙d
j=1(MpG(N + 1))]i ≥ 1. On the other hand, we derive the following

comparison

max
1≤i≤|A|

[

d
⊙

j=1

(MpG(N + 1))

]

i

≤ max
1≤i≤|A|

[

d
⊙

j=1

(M [1, 1, · · · , 1]T )
]

i

≤ |A|d.

Hence, the claim holds by induction.

Finally, an immediate consequence of the claim is that if γn is chosen as above,

then

max
a

pG;a(n) = max
1≤i≤|A|

γdn

0 γdn−1

1 · · · γd0

n [pG(n)]i = γdn

0 γdn−1

1 · · · γd0

n .

As a result,

logmaxa pG;a(n)

dn+1/(d− 1)
=

n
∑

i=0

d− 1

di+1
log γi.

The proof is finished by noting that the above series is increasing and that

lim
n→∞

logmaxa pG;a(n)

dn+1/(d− 1)
= lim

n→∞

log pG(n)

|∆n|
= h(TG).

�

Proposition 4.5. Let G(N) be as defined. Then, h(TGN
) converges to h(TG) as N

tends to infinity.

Proof. Let ε > 0 be given. Then, there exists N ≥ maxi Ni such that if N ≥ N ,

(4.11)
log [(3N + 2) · |I|]

|∆N | ≤ 1

2
ε,

(4.12)
log pG(N)

|∆N | ≤ h(TG) +
1

2
ε,

and

(4.13)
logmaxa pG;a(N)

dN+1/(d− 1)
≥ h(TG)− ε.

For N ≥ N , combining 4.3 with (4.11),(4.12) and (4.13), we conclude that

h(TG) ≥
log pG(N)

|∆N | − 1

2
ε

≥ log pG(N)(N)

|∆N | − log [(3N + 2) · |I|]
|∆N | − 1

2
ε

≥ h(TG(N))− ε,

and from Proposition 4.4 that

h(TG(N)) ≥
logmaxb pG(N);b(N)

dN+1/(d− 1)

≥ logmaxa pG;a(N)

dN+1/(d− 1)

≥ h(TG)− ε.

Since ε is arbitrary, the proof is completed. �
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To conclude the section, it is left to demonstrate the relative denseness of en-

tropies of irreducible hom Markov tree-shifts within those of all hom Markov tree-

shifts.

Theorem 4.6. Let H(d)
irr and H(d) is as defined in (4.1) and (4.2). Then,

H(d)
irr = H(d),

where A denotes the closure of a set A.

Proof. The inclusion H(d) ⊃ H(d)
irr is clear. To obtain the other inclusion, one finds

for everyM a sequence of binary irreducible matricesMN satisfying limN→∞ h(TMN
) =

h(TM ). To this end, we suppose G and G(N) are defined for M as before. Apply-

ing Proposition 4.5 we obtain that limN→∞ h(TG(N)) = h(TG) = h(TM ). Since

G(N) = ∪Ai∗∈IG
(N)
i∗ , in which G

(N)
i∗ are isolated strongly connected components,

there must exists iN such that h(T
G

(N)
iN

) = h(TG(N)). The proof is finished by

choosing matrix representation of T
G

(N)

i∗
N

as MN . �

Corollary 4.7. The following two closures of sets are equal.

H(d)
irr = {h(TX) : X is a shift space}.

Proof. In [13, Corollary 1], Petersen and Salama show that for every shift space X,

there exists a sequence of Markov shifts {Xr : r ∈ N} which are 1-step higher block

representation of r-step Markov shifts that shares a common set of (r + 1)-blocks

as X, such that

inf
r
h(TXr

) = h(TX).

Thus,

(4.14) {h(TX) : X is a shift space} ⊂ H(d).

Combining (4.14) with Theorem 4.6, we deduce the corollary. �

Remark 4.8. Note that h(TG) = maxAi∗∈I h(TGi∗
). The argument in this sec-

tion can be simplified in the way that all the discussions are restricted to a single

subgraph Gi∗ whose induced space has the same entropy as TGi∗
.

5. Denseness of h(TM )

This section investigates the denseness of H(d)
irr, or equivalently the denseness of

H(d). We first introduce some necessary notations. For l ≥ 1, let yl = {yi}li=1

be a positive integer sequence. Given yl and N ≥ 1, we defined a directed graph

G = Gyl;N as follows. The vertex set V (Gyl;N ) of Gyl;N is defined by

V (Gyl;N ) =

N+l
⋃

i=1

Vi =

N+l
⋃

i=1

{

vi;m(i) : 1 ≤ m(i) ≤ ni

}

,
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v1;1 v2;1

v3;1

v3;2

v4;1

v5;1

v5;2

v6;1

v6;2

v6;3

v6;4

Figure 5. Graph representation for entropy approximation

where

(5.1) ni =

{

1 for 1 ≤ i ≤ N,
yN+l+1−i for N + 1 ≤ i ≤ N + l;

and the edge set E(Gyl;N ) of Gyl;N is defined by

E(Gyl;N ) =

N+l
⋃

i=1

{(vα, vβ) : vα ∈ Vi and : vβ ∈ Vi+1} ,

where VN+l+1 = V1, and (vα, vβ). Clearly, Gyl;N is strongly connected.

For example, let y4 = {4, 2, 1, 2} and N = 2. We have n1 = 1, n2 = 1, n3 =

y4 = 2, n4 = y3 = 1, n5 = y2 = 2 and n6 = y1 = 4. Then,

V (Gy4;2) = {v1;1, v2;1, v3;1, v3;2, v4;1, v5;1, v5;2, v6;1, v6;1, v6;3, v6;4} ,
and the graph Gy4;2 can be drawn as in Figure 5.

Given n ≥ 1, for any finite sequence bn = (b1, b2, · · · , bn), we define the (left)

shift map σ(bn) ≡ (b2, b3, · · · , bn, b1). Clearly, σn(bn) = bn. The set of all σ
m(bn),

1 ≤ m ≤ n, of bn is denoted by S(bn). The main result is shown in Theorem 5.1.

Theorem 5.1. For d ≥ 2 and any finite positive integer sequence yl = (y1, y2, · · · , yl),

(5.2) µ(d)
yl

≡ (d− 1) max
wl∈S(yl)

{

1

d
logw1 +

1

d2
logw2 + · · ·+ 1

dl
logwl

}

is an accumulation point of H(d)
irr. Furthermore, H(d)

irr is dense in

(5.3) [(d− 1) log 2,∞) .

Proof. Let yl = {yi}li=1 be a positive integer sequence. For N ≥ 1, the irre-

ducible graph G = Gyl;N can be constructed as above. We label the vertices with

{1, 2, · · · ,K}, K = |V (G)|. For convenience, v1;1 is labeled by 1. The graph rep-

resentation G is strongly connected. For 1 ≤ i ≤ N + l, ni is defined as (5.1); for

i ≥ N + l + 1, ni = nr where i ≡ r(mod N + l) and n0 = nN+l. Then, by the

construction of G, it is seen that

pG;1(n) =

n
∏

i=0

ndi

i+1.
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From [12], irreducibility of G implies

h (TG) = lim sup
n→∞

log pG;1(n)

|∆n|
.

Let the finite sequence nN+l = (nN+l, nN+l−1, · · · , n1). Since ni = 1 for 1 ≤ i ≤ N

and ni = yN+l+1−1 for N + 1 ≤ i ≤ N + l,

h (TG) = lim sup
n→∞

log pG;1(n)
|∆n|

= lim sup
n→∞

1
|∆n|

n
∑

i=0

di log ni+1

= dN+l(d−1)
dN+l−1

(

max
wN+l∈S(nN+l)

{

1
d logw1 +

1
d2 logw2 + · · ·+ 1

dN+l logwN+l

}

)

= dN+l(d−1)
dN+l−1

(

max
wl∈S(yl)

{

1
d logw1 +

1
d2 logw2 + · · ·+ 1

dl logwl

}

)

,

and then

lim
N→∞

h (TG) = (d− 1) max
wl∈S(yl)

{

1

d
logw1 +

1

d2
logw2 + · · ·+ 1

dl
logwl

}

,

which means that µ
(d)
yl

is an accumulation point of H(d)
irr.

In particular, we consider yl = {yi}li=1 with y1 = 2a and yi ∈ {2j : 0 ≤ j ≤ d−1}
for 2 ≤ i ≤ l. It is clear that

µ(d)
yl

= (d−1) max
0≤m≤l−1

{

1

d
log ym+1 + · · ·+ 1

dl−m
log yl +

1

dl−m+1
log y1 + · · ·+ 1

dl
log ym

}

.

Then, it can be verified that

µ
(d)
yl

= (d− 1)
(

1
d log y1 +

1
d2 log y2 + · · ·+ 1

dl log yl
)

⇔
(

1
d − 1

dl−m+1

)

log y1 ≥
l−m
∑

i=1

(

1
di − 1

dm+i

)

log ym+i −
m
∑

i=2

(

1
di − 1

di+l−m

)

log yi

⇔
(

1
d − 1

dl−m+1

)

log y1 ≥ d2

d−1

(

1
d − 1

dm+1

) (

1
d − 1

dl−m+1

)

log 2d−1

⇔ log y1 ≥ d2

d−1

(

1
d − 1

dm+1

)

log 2d−1

⇔ a ≥ d2
(

1
d − 1

dm+1

)

.

for 1 ≤ m ≤ l − 1. If y1 ≥ 2d, then a ≥ d ≥ d2
(

1
d − 1

dm+1

)

for all m ≥ 1, implies

(5.4) µ(d)
yl

= (d− 1)

(

1

d
log y1 +

1

d2
log y2 + · · ·+ 1

dl
log yl

)

for all l ≥ 1. Hence,

lim
N→∞

h (TG) = (d− 1)

(

1

d
log y1 +

1

d2
log y2 + · · ·+ 1

dl
log yl

)

.
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Since
{

µyl
: y1 ≥ 2d and yi ∈ {2j : 0 ≤ j ≤ d− 1} for 2 ≤ i ≤ l, l ≥ 1

}

is dense in
[

(d− 1) log y1
d

,
(d− 1) log y1

d
+

log 2

d

)

.

It can be proven immediately that

(d− 1) log(y1 + 1)

d
≤ (d− 1) log y1

d
+

log 2

d

for y1 ≥ 2d. Therefore, H(d)
irr is dense in

⋃

y1≥2d

[

(d− 1) log y1
d

,
(d− 1) log y1

d
+

log 2

d

)

= [(d− 1) log 2,∞).

The proof is complete. �

Remark 5.2. It is clear that if µ
(2)
yl

∈
[

1
2 log 2,

1
2 log 3

)

, then yi ∈ {1, 2} for all

1 ≤ i ≤ l, which implies that

µ(2)
yl

= log 2

(

max
wl∈S(xl)

{

1

2
x1 +

1

22
x2 + · · ·+ 1

2l
xl

})

,

where xl = (x1, x2, · · · , xl) with xi = yi − 1 ∈ {0, 1}. Hence, we have

{µ(2)
yl

: positive integer sequence yl = (y1, y2, · · · , yl), l ≥ 1}
cannot contain any subinterval of

[

1
2 log 2,

1
2 log 3

)

, and then it is not dense in
[

1
2 log 2,

1
2 log 3

)

⊂
[

1
2 log 2, log 2

)

. Therefore, our method in this section fails for

proving H(2)
irr is dense in

[

1
2 log 2, log 2

)

, it needs further investigation. On the other

hand, we show numerically that H(2)
irr may have holes in

[

1
2 log 2, log 2

)

; see Figure

6 in Section 6. The case for d ≥ 3 is similar.

6. Further discussion and open problems

Two topics, namely, i. h(TM ) for reducible M , and ii. denseness of H(d) and

relative denseness of H(d)
irr in H(d) are discussed in this paper. These two topics are

studied in Section 3, 4 and 5, but there are many problems left unanswered.

For Part i., Theorem 3.3 shows that whether h(TM(a,b:l)) = log b is highly de-

pendent on the irreducible components Ea, Eb and their connection Rl. To un-

derstand factors affecting h(TM ) in more detail, the more general case for re-

ducible binary matrix M = M(A,B;R) =

[

A R
O B

]

is considered. In the fol-

lowing proposition, we take A ∈ {G,G∗}, G =

[

1 1
1 0

]

and G∗ =

[

0 1
1 1

]

.

Clearly, G and G′ has the same eigenvalues. Proposition 6.1 illustrates that whether

h(TM(A,B;R)) = max{h(TA), h(TB)} is affected by the specific structure of the irre-

ducible components A and B, not just their eigenvalues.

Proposition 6.1. Suppose R =

[

1 0
0 0

]

. Then, for d = 2, we have

h(TM(G,E2;R)) > max{h(TG), h(TE2
)} = log 2,



ON STRUCTURE OF TOPOLOGICAL ENTROPY FOR TREE-SHIFT OF FINITE TYPE 25

and

h(TM(G∗,E2;R)) = max{h(TG∗), h(TE2
)} = log 2.

Proof. First, M = M(G,E2;R) is considered. From [12], we have







p1(n+ 1) = (p1(n) + p2(n) + p3(n))
2
,

p2(n+ 1) = (p1(n))
2
,

p3(n+ 1) = p4(n+ 1) = (p3(n) + p4(n))
2
= 22

n+2−2,

with pi(0) = 1, 1 ≤ i ≤ 4. Let χn = p1(n)/p3(n), n ≥ 0. In particular, χ0 = 1 and

χ1 = 9/4 > 1. Clearly,

χn+1 =

(

1

2
χn +

p2(n)

2p3(n)
+

1

2

)2

≥
(

1

2
χn +

1

2

)2

≥ 1

4
χ2
n,

for n ≥ 0.

Let f(x) =
(

1
2x+ 1

2

)2
. It can be checked that f(x) is increasing for x ≥ 1,

and there exists unique intersection point of y = f(x) and y = x at x = 1. Since

χn+1 ≥ f(χn) with initial term χ1 > 1, {χn} approaches ∞ as n tends to ∞.

Similar to the proof of Theorem 3.2, from χn+1 ≥ 1
4χ

2
n, we have for n ≥ 1,

lim sup
m→∞

logχn+m

2n+m+1 − 1
≥ 2−n−1(logχn − 2 log 2),

which yields h(TM(G,E2;R)) > log 2.

On the other hand, consider M = M(G∗, E2;R). Since M(G∗, E2;R) has the

same row sum 2, we can obtain the estimation 22
n+1−1 ≤ pM(G∗)(n) ≤ 4 · 22n+1−2

for n ≥ 0. Therefore, h(TM(G∗,E2;R)) = log 2. The proof is complete.

�

Problem 1. In Section 3, we reveal that A, B and R play important roles on the

problem whether the inequality h(TM(A,B;R)) = max{h(TA), h(TB)} holds. How-

ever, the set of (A,B;R) discussed in Section 3 seems to be restricted. Such problem

for general (A,B;R) remains.

For one-dimensional shifts of finite type, it is known that the computation of

the value h(XM(A,B;R)) is independent of R. Theorem 3.3 reveals that R has a

dramatic influence on the computation of h(TM(A,B;R)). Table 5 shows numerically

that for d = 2 and A = B = G, h(TM(G,G;R)) > h(TG) for non-zero matrix R, but

h(TM(G,G;R)) is different for all R. It illustrates that h(TM ) for general reducible

M may be affected by all connection R’s among irreducible components.
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R = [r1,1, r1,2; r2,1, r2,2] h(TM(G,G;R)) h(TG)
[0,0;0,0] 0.20898764 0.20898764
[0,0;0,1] 0.26939373 0.20898764
[0,0;1,0] 0.28511043 0.20898764
[0,0;1,1] 0.323928413 0.20898764
[0,1;0,0] 0.310989658 0.20898764
[0,1;0,1] 0.332599455 0.20898764
[0,1;1,0] 0.341668176 0.20898764
[0,1;1,1] 0.365964234 0.20898764
[1,0;0,0] 0.330387956 0.20898764
[1,0;0,1] 0.349104083 0.20898764
[1,0;1,0] 0.355789035 0.20898764
[1,0;1,1] 0.378081254 0.20898764
[1,1;0,0] 0.381226587 0.20898764
[1,1;0,1] 0.393079449 0.20898764
[1,1;1,0] 0.397923765 0.20898764
[1,1;1,1] 0.413311852 0.20898764

Table 5.

Figure 6. Distribution of entropies H(d) for d = 2 and d = 3 (log
is computed with base 10.)

For part ii., since Theorem 5.1 shows that for d ≥ 2, H(d)
irr is dense in [(d −

1) log 2,∞) and the authors [5] prove H(d)
⋂
(

0, d−1
d log 2

)

= ∅. A straightforward

problem is to determine whether H(d)
irr or H(d) is dense in

(

d−1
d log 2, (d− 1) log 2

)

.

Our method in Section 4 can not work in this circumstances, and further study is
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needed to solve this problem. The following figure illustrates numerically that H(2)

may have two holes in the intervals (0.16579, 0.16933) and (0.22219, 0.22577), and

H(3) also may have four holes in the intervals (0.21677, 0.22299), (0.2366, 0.26758),

(0.282, 0.28988) and (0.30103, 0.31808). Therefore, it is possible that H(d) is not

dense in
(

d−1
d log 2, (d− 1) log 2

)

.

Since it can happen that h(TM ) > max
1≤i≤q

{h(TMi
)}, the following problem is raised

naturally.

Problem 2. Is H(d)
irr = H(d)?

For one-dimensional SFTs, {h(XM ) : M is binary} is equal to the set of all log-

arithms of Perron numbers in [1,∞); for higher-dimensional SFTs, Hochman and

Meyerovitch [6] prove that a non-negative number can be an entropy if and only if

it is right recursively enumerable (the detailed definition is omitted here, see [6]).

Problem 3. Is there any classification result on the entropies of hom Markov tree-

shifts? In particular, does the class H(d) contains all logarithms of Perron numbers

or all right recursively enumerable numbers in its dense intervals?
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