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Abstract

This article aims to compare the long-term behavior of a spread model
before and after a type in the model becomes frozen; namely, a type of
which an individual only produces individuals of the same type. By means
of substitution dynamical systems and matrix analysis, the first result of
this work gives the spread rates of a 1-spread model with one frozen
symbol. Later in the work, this is shown to hold under more general
settings, which include generalized frozen symbols and frozen symbols
in m-spread models. Numerical experiments are provided as supporting
evidence for the theory.

Modelling always plays a significant role in disease control, preven-

tion and decision making. We propose a mathematical model to study

the population in which certain type of individuals will be blocked or

removed. Using these models, we are able to consider the influence

on the current population by its history within certain time period,

predict the long-term behavior of the spread rate, and describe the

transition of the spread pattern during the pandemic period. Our

methodology gives a comparison between two models which can be

used as a reference to determine the efficiency of the policies for pre-

venting the pandemic outbreak. Some numerical experiments with

different irreducible structures are also provided to show the spread-

ing tendency as well as the exponential decay when a type is frozen

to support the theoretical results.
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1 Introduction

1.1 Motivations

A population is often divided into several groups for some purposes. For ex-

ample, according to WHO COVID-19 Case definition [10], patients fulfilling

the definition can be categorized as suspected, probable or confirmed case for

surveillance and epidemic investigation purposes. People in different categories

may require different treatments and have different impacts on the disease con-

trol. In this paper, we consider a population in which individuals are categorized

into groups according the patterns how they spread certain virus. Individuals

in the same category share the same spread pattern and are said to be of the

same type. Especially, in this work, we assume that the population consists of

individuals of K different types, say a1, a2, · · · , aK .

The purpose of this paper is to introduce a spread model to describe the

spread of a biological system and gives a full characterization on the spread

rate of all types in such a system. As every now and then the disease out-

breaks greatly affect many aspect of life, experts in different fields are striv-

ing to propose mathematical models that either explain or predict the trend

of the pandemic in order to aid decision making and minimize the impact

(cf. [4, 6, 15, 9, 7, 11, 5, 1, 14, 13]). Among these research topics, one that

attracts much of attention is the characterization of the growth of the number

of the infected/deceased when certain measures, such as mandatory wearing

mask or quarantine, are taken to prevent the spread. For instance, in [16],

the authors extend their earlier work to apply the logistic map model to the

COVID-19 and explain the decrease in fatality rate in terms of the decrease of

parameter d∞ after the vaccination steps in. This is also the main idea of this

work. Based on the previous works of the authors [2, 3], in which two kinds

(topological and random) of spread models are discussed, this article contin-

ues to explore the long-term behavior of the spreading after the transmission

is blocked by means of the aforementioned measures, or in terms of the spread

model, a type f (or more generally, a set F = {fi}Ri=1 as defined in Section 3.4)

is ‘frozen’ so that any individual of this type fails to produce any child other

than exactly one of type f . As shown later, the number of type-f individu-
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als are significantly reduced in the long run after f is frozen. In the following

paragraph, we introduce the spread model and spread rate more precisely.

1.2 1-spread models and spread rate

Let A = {ai}Ki=1 be a type set, and Td be the conventional d-tree for d ∈ N

with the root ϵ. Define Σs = {g ∈ Td : |g| = s} for s ∈ N and ∆h
n = {g ∈ Td :

g is a descendant of h with |g − h| < n}, where |g − h| represents the length

of the unique path from h to g and |g| = |g − ϵ|. If h = ϵ, we simply write

∆ϵ
n = ∆n = ∪n−1

i=0 Σ
i.

For convenience, we write

∆n
m = ∆n\∆m = {g ∈ Td : m ≤ |g| < n},

and for F ⊆ Td we define Fn
m = F ∩ ∆n

m. For a finite set F ⊆ ∆1, a function

p : F → A is called a 1-pattern and F = Fp is called the support of p. Denote

by P1 the set of all 1-patterns. For p ∈ P1, write p(0) = p(ϵ) ∈ A and for

g1, . . . , gdp
∈ Fp with |g| = 1, dp ∈ N, we write p(1) = (p(g1), p(g2), . . . , p(gdp

)).

Thus, the 1-pattern (cf. Figure 1) can also be written as

p = (p(0); p(1)) (1)

= (p(ϵ); p(g1), p(g2), . . . , p(gd(1)
p
)).

Let S = {pi}Li=1 ⊆ P1 and set d = maxp∈S dp. The corresponding d-tree Td
is defined in the preceding paragraph, and other notations, e.g., ∆n

m, Fn
m, etc.,

are also defined. The set S is called a spread model if for every g ∈ Fp with

|g| = 1, there exists a unique q ∈ S such that q(0) = p(g). Given a 1-spread

model S and p ∈ S, we define τ∞p as follows. Let τ0p = p(0) and τ1p = p. For

g ∈ Fp with |g| = 1, since S is a 1-spread model, there exists an qg ∈ S with

q
(0)
g = qg(ϵ) = p(g). Thus, we replace p(g) by the 1-pattern qg for all g ∈ Fp

with |g| = 1 to generate a pattern τ2p (cf. Figure 2). Once τnp is constructed,

we substitute the pattern qg for the symbol τnp (g), g ∈ Fτn
p

with |g| = n, to

generate τn+1
p . Finally, we define τ∞p = limn→∞ τnp (write τp = τ∞p to shorten

the notation) and call it the infinite spread pattern induced from p with respect

to S (or induced spread pattern from p, see Figure 3). Let τp for some p ∈ S
and p(0) = p(ϵ) = b. Suppose F ⊆ Fτp is a finite set, we denote by τp|F
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Figure 3: Generation of τ∞p

the sub-pattern of τp along the subset F ; that is, τp|F = {τp(g) : g ∈ F}.
Let {kn}∞n=1 ⊆ N and sn =

∑n
i=1 ki. The following value sb(a; {kn}∞n=1) is

interesting and important for the spread model.

sb(a; {kn}∞n=1) := lim
n→∞

sb(a; [sn, sn+1]) = lim
n→∞

Oa(τp|∆sn+1
sn

)∣∣∆sn+1
sn (τp)

∣∣ , a ∈ A, (2)

where Oa(τp|F ) denotes the number of occurrences of type a in the range F ,

and |F | is the size of the set F . Obviously, the value sb(a; {kn}∞n=1) indicates

the average of type a spread over the range ∆
sn+1
sn , as n → ∞, with the initial

pattern p ∈ S (or initial type b ∈ A). More precisely, since the range ∆
sn+1
sn

represents the set of lattices in the snth, (sn + 1)th, · · · , (sn+1 − 1)th levels,

the spread rate sb(a; {kn}∞n=1) means the proportion of the individuals of type

a in these levels in the population initiated with an individual of type b in the

long run. Using the theory of substitution dynamical systems, sb(a; {kn}∞n=1)

can be calculated as the ath component of the eigenvector of the associated

ξ-matrix (defined later), where ξ is a substitution induced by the spread model.

In [2], the random spread model is also built, and the theory of computation of

sb(a; {kn}∞n=1) is also addressed.

1.3 1-spread model with a frozen symbol and spread rate

An interesting question arises naturally.
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Problem 1. Given a 1-spread model S, if a certain type f ∈ A (or a set

F = {fi}Ri=1 ⊆ A) has become non-infectious, e.g., f has been quarantined or

recovered, how does the new type f (or the new 1-spread model Sf ) affect the

spread rate (2) of some a ∈ A?

As we mentioned before, Problem 1 is important since if we could find such

f ∈ A in which the spread rate decreases significantly, further actions, such as

isolating f or healing f , could be accomplished. To answer Problem 1, we define

the 1-spread model with a frozen symbol1 f ∈ A as follows. Let S = {pi}Li=1 be

a 1-spread model and f ∈ A = {ai}Ki=1 be a frozen symbol. For pf ∈ S with

p
(0)
f = f (note that such pf is unique since S is a spread model), we replace the

pattern pf with

p̄f = (p̄
(0)
f ; p̄

(1)
f ) = (f ; f). (3)

Define Sf = (S\{pf}) ∪ {p̄f} and call it a 1-spread model with frozen symbol

f . Let Sf be defined as above and the induced spread pattern from p, say τfp ,

be given. Given {kn}∞n=1 ⊆ N, we set sn =
∑n

n=1 kn. The objective of this

investigation is to calculate the spread rate sfp(a; {kn}∞n=1) (defined as (2)) of

a ∈ A with respect to Sf .

Let M = Mf be the associated ξ-matrix of Sf (defined in Section 2). As

M is no longer irreducible, it can be of the form (4) and (24). Let r ∈ N be

the number of irreducible components of M . Proposition 2 presents the theory

for the calculation of the spread rate sb(a; {kn}∞n=1) when kn is a single layer.

Theorem 8 extends Proposition 2 to the case where r = 2, and the general cases

of r > 2 are handled by Theorem 14. The spread rate for the 1-spread model

with a frozen set is discussed in Section 3.4. Section 4 focuses on the spread

rate of an Sf within a constant or increasing range. More precisely, Theorem 18

addresses the cases where sn =
∑n

i=1 ki is an unbounded sequence of integers.

Finally, the spread rate for an m-spread model is examined in Section 5, and

some numerical results are presented in Section 6.

1We call such symbol frozen is because p̄(0) = p̄(1) = f , it forces τp̄(g) = f for all g ∈ Fτp̄

and Fτp̄ is just an infinite 1-d single chain. This means τp̄ cannot spread, and therefore be
‘frozen’.
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2 Preliminaries

2.1 Substitutions, ξ-matrix and spread rate

Let A = {ai}Ki=1 be a type set, and set A∗ = ∪∞
m=0Am, i.e., the monoid of A,

where Am is the set of blocks of A of length m ∈ N. Suppose S is a 1-spread

model and p = (p(0); p(1)) = (b; p(1)) ∈ S. The associated substitution ξ on A
is a map ξ : A → A∗ defined by ξ(b) = p(1), where the word length |ξ(b)| of
ξ(b) equals d

(1)
p , the number of g ∈ Fp with |g| = 1. This substitution induces a

morphism of A∗ by putting ξ(B) = ξ(b0)ξ(b1) · · · ξ(bn) if B = b0b1 · · · bn ∈ A∗

and ξ(B) = ∅ if B = ∅. Denote by ξn = ξ ◦ ξn−1 the n-time iteration map of

ξ. Suppose ξ is a substitution of a spread model S. The associated ξ-matrix

M = Mξ, which is a K ×K matrix with each entry in {0, 1}, is defined by

M = [mij ] := [Oai
(ξ(aj))],

recalling that Oai
(ξ(aj)) is the number of occurrences of the type ai in the

pattern ξ(aj). Furthermore, if ω ∈ A∗ and L(ω) ∈ RK denotes the vector

whose components are Oai(ω) for 1 ≤ i ≤ K, it is clear that L(ξ(ω)) = M ·L(ω)
and that

L(ξn(aj)) = MnL(aj),

where L(aj) = [0, . . . , 0,

jth︷︸︸︷
1 , 0, . . . , 0] and |ξn(aj)| = 1KMnL(aj), 1

K ∈ RK

with all entries are all 1′s. For more details we refer the reader to [12].

Theorem 3.1 [2] provides a method to compute sb(a) := sb(a; {kn}∞n=1) with

respect to {kn}∞n=1 with kn = 1 ∀n ≥ 1. That is, for all p ∈ S with p(0) = b, we

have

sb(a) = lim
n→∞

Oa(τp|∆sn+1
sn (τp)

)∣∣∆sn+1
sn (τp)

∣∣ = lim
n→∞

Oa(τp|Σsn (τp))

|Σsn(τp)|
= v(a),

where v(a) is the ath component of the right positive eigenvector v of the ξ-

matrix M corresponding to the maximal eigenvalue ρM of M .

2.2 Irreducible components

Let f ∈ A be a frozen symbol and Sf be the 1-spread model with frozen symbol

f . We continue in the same fashion as above to define the substitution ξf , and
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set M0 = Mξ and M = Mξf the associated ξ-matrix and ξf -matrix respec-

tively. Since M0 is a K ×K binary matrix, we denote by GM0 = (VM0 , EM0)

the associated graph, that is VM0
= A and EM0

= {(ai, aj) ∈ VM0
× VM0

:

M0(ai, aj) = 1}. It is clear that M is obtained from M0 by deleting all edges

of the form (f, a) ∈ EM0
. Therefore, we have

M =

[
M 0
C 1

]
, (4)

where C ∈ R1×(K−1) and M ∈ R(K−1)×(K−1). We emphasize that two addi-

tional assumptions about the complexity of the spreading are made as in [2];

namely, limn→∞ |ξn(α)| = ∞ ∀α ∈ A and there exists ξ(α0) beginning with α0.

These two conditions ensure that the associated ξ-matrix M0 is primitive, i.e.,

(M0)
k
> 0 for some k ∈ N. Nevertheless, the matrix M defined in (4) is no

longer necessarily primitive. Hence, we suppose that

M =


A[11] 0 0 0
A[21] A[22] 0 0
... · · · . . . 0

A[r1] · · · · · · A[rr]

 (5)

is the irreducible decomposition of M . As mentioned above, for irreducible

A ∈ Mn×n(R), we denote by GA = (VA, EA) the associated graph, where VA,

EA are the vertex and edge set of the graph GA, respectively. The best general

reference here is [8]. Here and subsequently, we use a ∈ VA to as the symbol a

in the index set of the matrix A. Surprisingly, the rigorous value of the spread

rate sfb (a; {kn}∞n=1) is highly dependent on the choice of the ‘initial type’ b and

‘target type’ a. In the next section, we divide the discussion into cases where

r = 1, r = 2 and r > 2.

Let Mm×n be the set of m × n binary matrices. In what follows, if A ∈
MK×K admits exactly one eigenvalue, say ρA, satisfying ρA > λ for all eigen-

value λ of A other than ρA, we call ρA the maximal eigenvalue of A. Meanwhile,

the corresponding eigenvector, say vA (resp. wA), is called the right (resp.

left) maximal eigenvector of A. To simplify the notation, we define ρ = ρM,

ρ0 = ρM0
, v = vM, v0 = vM0

, w = wM and w0 = wM0
, and v̄ stands for the

normalized vector of v. Finally, we set as 1n the vector in Rn with every entry
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1 and

Inm = [0, . . . , 0,

mth︷︸︸︷
1 , 0, . . . , 0]t ∈ Rn (6)

for n,m ∈ N with n ≥ m and IKm = em.

3 1-spread model with a frozen symbol: single
layer

Throughout the paper, for a matrix A we denote by A(i) (resp. A
(j)) the vector

of the ith row (jth column) of A.

3.1 The case where r = 1

Proposition 2 (r = 1). Let S = {pi}Li=1 be a spread model and Sf = {qi}Li=1 be

the spread model with a frozen symbol f ∈ A = {ai}Ki=1. Suppose the associated

ξf -matrix M is of the form (4), and M is primitive, then for all b ∈ VM we

have

sfb (a) = v̄(a) = v̄M(a) > 0, ∀a ∈ VM ∪ {f}.

Furthermore, sff (a) = 0 ∀a ∈ VM and sff (f) = 1.

Remark 3. Proposition 2 tells that if the population is initiated with an indi-

vidual of non-frozen type b and the ξf -matrix M is of the form

M =

[
M 0
C 1

]
,

with M primitive, then the group of the individuals of type a will survive and

eventually the proportion of individuals of type a in the population will tend

to the ath component of the normalized right eigenvector associated with the

maximal eigenvalue of the ξf -matrix M. On the other hand, if the population is

initiated with an individual of the frozen type f , then the whole population will

only consist of one individual of the frozen type in the long run. The case when

the matrix M is no longer primitive will be discussed in the next subsection.

Proof. 1. Since M is primitive, we have ρM > 1 and ρ = ρM > 1. Suppose

a, b = p(0) ∈ VM , say b = ai and a = aj , where 1 ≤ i, j ≤ K − 1 we have

sfb (a) = lim
n→∞

Oa(τp|Σn(τp))

|Σn(τp)|
= lim

n→∞

(Mnei) (j)

1KMnei
= lim

n→∞

etjM
nei

1KMnei
. (7)
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Assume that w = [w, c1] and v = [v, c2], where 0 ̸= ci ∈ R for i = 1, 2. First,

we claim that

lim
n→∞

etjM
nei

ρn
= c3v(j), (8)

where 0 < c3 ∈ R is a constant. Indeed, if M = PDP−1 and M = PDP−1 are

the Jordan decomposition of M and M , respectively, it can be easily checked

that

P =

[
P 0
Q 1

]
, P−1 =

[
P−1 0
R 1

]
and D =

[
D 0
0 1

]
,

where Q, R ∈ R1×k. Assume D11 = ρM = ρ, we obtain that
(
P−1

)t
(1)

= [w]t ∈
RK−1 (resp. P (1) = [v] ∈ RK−1) is the left (resp. right) Perron eigenvector

of ρM . Since M is primitive, we have
(
P−1

)
(1)

= [w]t > 0. Thus, c3 :=(
P−1IK−1

i

)
(1) > 0 for 1 ≤ i ≤ K − 1 (recall that

(
P−1Ii

)
(j) is the jth

component of P−1Ii). Note that

etjM
nei

ρn
=

etjPDnP−1ei

ρnM
=

etj

[
P 0
Q 1

] [
Dn 0
0 1

] [
P−1 0
R 1

]
ei

ρnM
, (9)

that we have |λ| < ρM if λ is an eigenvalue of M with λ ̸= ρ, and that ρM is

simple (since M is primitive). It follows from (9), from v = [v, c2] and from

1 ≤ j ≤ K − 1 that

lim
n→∞

etjM
nei

ρn
= lim

n→∞

etj

[
P 0
Q 1

] [
Dn 0
0 1

] [
P−1 0
R 1

]
ei

ρnM

= lim
n→∞

etj

[
P 0
Q 1

] [ Dn

ρn
M

0

0 1
ρn
M

] [
P−1IK−1

i

RIK−1
i

]

= etj

[
P 0
Q 1

]
et1
0
...
0


[

P−1IK−1
i

RIK−1
i

]

= c3 × etj

[
P 0
Q 1

]
e1

= c3 × etjP
(1)

= c3 × v(j).
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Thus, (8) follows. Next, we claim that

lim
n→∞

1KMnei
ρn

= c3

K∑
i=1

v(i). (10)

Following the same argument as above, we also have

lim
n→∞

1KMnei
ρn

= lim
n→∞

1K

[
P 0
Q 1

] [ Dn

ρn
M

0

0 1
ρn
M

] [
P−1IK−1

i

RIK−1
i

]

= c3 × 1K

[
P 0
Q 1

]
1
0
...
0


= c3 × 1KP(1) = c3

K∑
i=1

v(i). (11)

Combining (10), (8) with (7) yields

sfb (a) = lim
n→∞

etjM
nei

1KMnei
= lim

n→∞

etjM
nei/ρ

n

1KMnei/ρn
=

c3v(j)

c3
∑K

i=1 v(i)
=

v(j)∑k+1
i=1 v(i)

= v̄(j),

which is the desired equality.

2. It can easily computed that

sff (a) = lim
n→∞

etjM
neK

1KMneK

= lim
n→∞

etj

[
P 0
Q 1

] [
Dn 0
0 1

] [
P−1 0
R 1

]
eK

1K

[
P 0
Q 1

] [
Dn 0
0 1

] [
P−1 0
R 1

]
eK

= lim
n→∞

etj

[
P 0
Q 1

] [
Dn 0
0 1

] [
0k
1

]
1K

[
P 0
Q 1

] [
Dn 0
0 1

] [
0k
1

]

= lim
n→∞

etj

[
P 0
Q 1

] [
0k
1

]
1K

[
P 0
Q 1

] [
0k
1

]

= lim
n→∞

etj

[
0k
1

]
1K

[
0k
1

] .
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Hence,

sff (a) =

{
0 if a ∈ VM ,
1 if a = f.

This completes the proof.

3.2 The case where r = 2

In this section, we deal with the case where M (see (4)) has two irreducible

components of which the two spectral radii are distinct. Lemma 4 below shows

that the nonzero ‘communication class’ C of M ends up being positive after

iterations of M if the matrices in the diagonal parts are primitive. Let En be

n× n square full matrix, and M be of the form (12), we denote by

Mn =

[
An 0
Cn Bn

]
the corresponding components of product of Mn.

Lemma 4. Let

M =

[
A 0
C B

]
(12)

be the irreducible decomposition of M , where A ∈ Rk×k, B ∈ Rl×l and C ∈ Rl×k.

If A, B are primitive and C ̸= 0, then there exists an N > 0 such that CN > 0.

Proof. Since C ̸= 0, there exists 1 ≤ i ≤ l and 1 ≤ j ≤ k such that C(i, j) = 1.

Since A, B are primitive, let p and q > 0 be such that Ap ≥ Ek and Bq ≥ El.

Note that if C(n) ̸= 0, then (CEk)(n) > 0 and, similarly, if C(m) ̸= 0, then

(ElC)
(m)

> 0. Therefore, if κ− 1 ≥ max{p, q},

Cκ ≥ CAκ−1 +Bκ−1C = CAκ−1 +Bκ−1C ≥ CEk + ElC.

This shows that (Ck)(i) > 0 and (Ck)
(j)

> 0. Repeating the same process, we

have

C2κ ≥ CκEk + ElCκ ≥ El×k.

Thus, N = 2κ is the desired positive integer. This completes the proof.

Lemma 5 indicates that every component of the left eigenvector of the max-

imal eigenvalue ρM is either 0 or positive.
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Lemma 5. Let the assumptions of Lemma 4 be satisfied. Suppose wt = [w1, w2]
t ∈

Rk+l is the left eigenvector corresponding to ρM , where wt
1 ∈ Rk and wt

2 ∈ Rl.

Then wi = 0 or wi > 0 for i = 1, 2.

Proof. Let wt = [w1, w2]
t ∈ Rk+l be the left maximal eigenvector corresponding

to ρM , i.e., w ̸= 0 and wM = ρw. For m ∈ N, we have

[ρmMw1, ρ
m
Mw2] = wMm = [w1, w2]

[
Am 0
Cm Bm

]
= [w1, w2]

[
Am 0
Cm Bm

]
= [w1A

m + w2Cm, w2B
m] . (13)

Suppose ρM = ρB , since B is primitive, the Perron-Frobenius theory (cf. [8, 12])

is applied to show that w2 > 0. Take m = 2 (max{p, q}+ 1), where p and q

are defined in Lemma 4, then Lemma 4 is applied to show that Cm > 0. Since

w2 > 0, we have ρmMw1 = w1A
m + w2Cm ≥ w2Cm > 0, thus w1 > 0. Suppose

ρM = ρA, it follows from (13) we obtain

[w1, w2] =

[
w1A

m + w2Cm

ρmM
,
w2B

m

ρmM

]
=

[
w1A

m + w2Cm

ρmA
,
w2B

m

ρmA

]
. (14)

Since ρB < ρA, we have

w2B
m

ρmM
=

w2B
m

ρmA
→ 0 as m → ∞,

Thus, w2 = 0 and it follows from (14) we can deduce that w1 is the Perron

vector of A. Since A is primitive, Perron-Frobenius Theorem is applied to show

that w1 > 0. This completes the proof.

Lemma 5 may be indicated more specifically in Lemma 6. Since the proof

is almost identical to the one from Lemma 5, it is omitted.

Lemma 6. Under the assumptions of Lemma 4, suppose wt = [w1, w2]
t ∈ Rk+l

is the left maximal eigenvector corresponding to ρM . Then

1. If 1 < ρA < ρB, then w = [w1, w2] > 0, and w2 is the left maximal

eigenvector of ρB.

2. If ρA > ρB > 1, then w = [w1, 0], and w1 > 0 is the positive left maximal

eigenvector corresponding to ρA.

12



The same proof can be applied to the right maximal eigenvector of M as

well.

Lemma 7. Under the same assumption of Lemma 6, suppose v = [vt1, v
t
2]

t ∈
Rk+l is the right maximal eigenvector of M , where v1 ∈ Rk and v2 ∈ Rl. Then

1. If 1 < ρA < ρB, then v1 = 0 and v2 > 0 is the right maximal eigenvector

of ρB.

2. If ρA > ρB > 1, then 0 < v = [vt1, v
t
2]

t ∈ Rk+l and v1 is the right maximal

eigenvector of ρA.

Proof. The proof is almost identical to Lemma 6 if one replaces left maximal

eigenvector w = [w1, w2] by the right maximal eigenvector v = [vt1, v
t
2]

t, and

thus we omit it.

Theorem 8 (r = 2). Let S = {pi}Li=1 be a 1-spread model and Sf = {qi}Li=1

be the associated spread model with a frozen symbol f ∈ A = {ai}Ki=1. Let the

ξf -matrix M be of the form (4) and

M =

 A 0 0
C B 0
D E 1

 =

[
M 0
C 1

]
and M =

[
A 0
C B

]
be the irreducible decomposition of M ∈ R(k+l)×(k+l). Suppose A and B are

primitive and C ̸= 0 and set

M1 :=

[
B 0
E 1

]
.

Then

1. If 1 < ρA < ρB, we have

sfb (a) =


0 if b ∈ VA, a ∈ VA,

v̄M(a) if b ∈ VA, a ∈ VB ∪ {f},
0 if b ∈ VB, a ∈ VA,

v̄M1(a) if b ∈ VB, a ∈ VB ∪ {f}.
(15)

Furthermore, sff (a) = 0, ∀a ∈ VA ∪ VB and sff (f) = 1.

2. If ρA > ρB > 1, we have

sfb (a) =

 v̄M(a) if b ∈ VA, a ∈ VA ∪ VB ∪ {f},
0 if b ∈ VB, a ∈ VA,

v̄M1
(a) if b ∈ VB, a ∈ VB ∪ {f},

(16)

13



Furthermore, sff (a) = 0, ∀a ∈ VA ∪ VB and sff (f) = 1.

Remark 9. If the matrix M is no longer primitive but has the irreducible

decomposition of the form

M =

[
A 0
C B

]
where A and B are primitive with maximal eigenvalues greater than 1 and if the

population is initiated with an individual of type b, then Theorem 8 reveals the

following:

1. According to the form of the ξf -matrix M, individuals of type b ∈ VB

will not produce individuals of type a ∈ VA. So, if b is in VB, then the

spread rate of type a with a belonging to VA is zero. So, the group of the

individuals of type a will survive only when a ∈ VB ∪ {f} and the spread

rate can be found from the corresponding component in the normalized

right eigenvector v̄M1
(a) of the matrix M1 defined in the Theorem. This

is a different result from that in the case when M is primitive.

2. If b ∈ VA and a ∈ VB ∪ {f} then the spread rate of type a is the ath

component in the normalized right eigenvector v̄M(a) of the ξf -matrix M.

3. On the other hand, if b ∈ VA but a ∈ VA, then we need to compare the

maximal eigenvalues ρA and ρB of the matrices A and B, respectively, to

know the spread rate of type a. Theorem 8 says that, only when ρA > ρB,

the individuals of type a will survive with a positive spread rate v̄M(a);

otherwise, the group of the individuals of type a will die out eventually.

Proof. It suffices to prove Theorem 8 (1), and the other part can be treated

similarly. We note that K = k + l + 1, and suppose w = [w1, c1] ∈ Rk+l+1 is

the left maximal eigenvector of M. Since 1 < ρA < ρB , we have ρM = ρB and

w1 = wM . If we write w = [wM , c1], it follows from Lemma 6 that we have

wM > 0. Suppose M = PDnP−1 is the Jordan decomposition of M. Using the

same argument as proposition 2, for all 1 ≤ i, j ≤ k + l, we obtain

lim
n→∞

etjM
nei

ρn
= lim

n→∞

etjM
nei

ρnB
= lim

n→∞

etjPDnP−1ei

ρnB
= c4vM(j),

lim
n→∞

1KMnei
ρn

= lim
n→∞

1KMnei
ρnB

= c4

K∑
i=1

vM(i). (17)

14



where 0 < c4 ∈ R is a constant. Suppose v = [v1, v2, d]
t ∈ RK is the right

maximal eigenvector ofM, it is easily seen that [v1, v2]
t is also the right maximal

eigenvector of M and d ̸= 0. Thus, the cases where b ∈ VA in (15) follows from

(17), Lemma 6, and Lemma 7. Since ξf (b) cannot produce type a for b ∈ VB ,

a ∈ VA, thus s
f
b (a) = 0. The formula for b ∈ VB and a ∈ VB∪{f} is discussed in

Proposition 2. Finally, the cases where sff (a) = 0, ∀a ∈ VA ∪ VB and sff (f) = 1

is also discussed in Proposition 2 as well. This completes the proof of Theorem

8 (1), and the proof is thus completed.

The following theorem illustrates that if some type f is no longer infectious,

then the rate of spreading decays exponentially.

Theorem 10. Let S = {pi}Li=1 be a spread model and Sf = {qi}Li=1 be the

1-spread model with a frozen symbol f ∈ A = {ai}Ki=1. Suppose a, b ∈ VA ∪ VB

with p ∈ S ∩ Sf and p(0) = b and Oa(τ
f
p |Σn(τf

p )) > 0, then there exists C1 and

C2 > 0

C2

(
ρ

ρ0

)n

≤
Oa(τ

f
p |Σn(τf

p ))

Oa(τp|Σn(τp))
≤ C2

(
ρ

ρ0

)n

. (18)

Furthermore,

lim
n→∞

Oa(τ
f
p |Σn(τf

p ))

Oa(τp|Σn(τp))
= 0 ∀a, b ∈ VA ∪ VB. (19)

Remark 11. Theorem 10 tells that as long as the individuals of type a survive

in the frozen model with the initial type b, where a, b ∈ VA ∪ VB, its occurrence,

comparing with that in the original non-frozen model, will decay exponentially.

More precisely, the decay rate of the ratio of the occurrence after freezing type

f to the occurrence before freezing type f is related to the ratio of the maximal

eigenvalue ρ of the ξf -matrix in the frozen model to the maximal eigenvalue ρ0

of the ξ-matrix in the original model. From this result, we can know in advance

how to choose a proper type f to freeze in order to have a greatest decay rate

of a certain type a by computing the eigenvalues of the ξf -matrix in the frozen

models with different types f . In practice, for example, it can serve as a tool

to determine which group of people are put in quarantine in order to have the

greatest decay of the number of a certain group of people such as the group of

confirm cases.
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Proof. Following the same argument as Theorem 8 with the assumptionOa(τ
f
p |Σn(τf

p )) >

0, we have

lim
n→∞

Oa(τ
f
p |Σn(τf

p ))

ρn
= lim

n→∞

etaM
neb

ρn
= v(a) > 0,

lim
n→∞

Oa(τp|Σn(τp))

ρn0
= lim

n→∞

etaM
neb

ρn0
= v0(a) > 0,

where v0 is the right maximal eigenvector ofM0 and ec is defined as (6) with the

only 1′s appearing at the cth coordinate, thus (18) follows. Note that ρ = ρM

where M =

[
M 0
C 1

.

]
Since M is also the principle matrix M0, we have

ρ0 > ρM = ρ (Theorem 4.4.7 [8]). Thus, (19) follows from (18) along with the

fact that ρ
ρ0

< 1. This completes the proof.

3.3 The case where r ≥ 2

Let M and M be of the forms (4) and (24). Conditions (H1) and (H2) on M

are defined as follows.

(H1) The matrices A[ii] are primitive and 1 < ρA[ii] ̸= ρA[jj] ∀1 ≤ i ̸= j ≤ r;

(H2) For all 2 ≤ i ≤ r, and 1 ≤ j < i, we have A[ij] ̸= 0.

For 1 ≤ i, j ≤ r, we define M [i,j] according to M below

M [i,j] =


A[ii] 0 0 0

A[(i+1)(i)] A[(i+1)(i+1)] 0 0
... · · · . . . 0

A[ji] · · · · · · A[jj]

 (20)

Finally, the associated Mi for 1 ≤ i ≤ r is defined as follows. Set M1 = M. For

2 ≤ i ≤ r, Mi is defined in the matrix form of (21).

M =

[
M 0
C 1

]
=

[
A[11] 0
C[21] M1

]

=


A[11] 0 0 0 0
A[21] A[22] 0 0 0
... · · · . . . 0 0

A[j1] · · · · · · A[jj] 0
C[(j+1)1] · · · · · · C[(j+1)j] Mj

 . (21)
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Lemma 12. Let M be defined as in (24) and satisfy (H1) and (H2). If w =

[w1, . . . , wr] is the left maximal eigenvector of M , then wi = 0 or wi > 0

∀1 ≤ i ≤ r.

Proof. The proof is similar to that of Lemma 5, and thus we omit it.

Lemma 13. Suppose M satisfies (H1) and (H2) and that ρM = ρA[ll] for some

1 ≤ l ≤ r. Let wM = [w1, w2, . . . , wr] and vM = [v1, v2, . . . , vr]
t be the maximal

left and right eigenvectors of M , respectively, and let wM = [w[1,i], w[i+1,r]]

(resp. vM = [v[1,i], v[i+1,r]]
t), where w[m,n] = [wm, . . . , wn] (resp. v[m,n] =

[vm, . . . , vn]
t). Then

1. w[1,l] > 0, w[l+1,r] = 0 and w[1,l] is the left maximal eigenvector of M [1,l];

2. v[1,l−1] = 0, v[l,r] > 0, and v[l,r] is the right maximal eigenvector of M [l,r].

Proof. We only prove Lemma 13 (1), since the proof of Lemma 13 (2) is similar.

We claim that if 1 < ρM = ρA[ll] , then wi > 0 for 1 ≤ i ≤ l, and wi = 0 for

l + 1 ≤ i ≤ r. For r = 2, since M [1,2] =

[
A[11] 0
A[21] A[22]

]
and A[21] ̸= 0 (cf.

(H2)), the result is true according to Lemma 6 and Lemma 7. For r ≥ 2, let

wM = [w[1,l], w[l+1,r]], where w[m,n] = [wm, . . . , wn]. Then, we have

[ρA[ll]w[1,l], ρA[ll]w[l+1,r]]

= wM

[
M [1,l] 0
C[l+1,l] M [l+1,r]

]
= [w[1,l]M

[1,l] + w[l+1,r]C
[l+1,l], w[l+1,r]M

[l+1,r]].

Suppose w[l+1,r] ̸= 0. Then, there exists wk for l + 1 ≤ k ≤ r such that wk > 0

(cf. Lemma 12). It follows from (22) that

[w[1,l], w[l+1,r]] = [
w[1,l]M

[1,l]
m + w[l+1,r]C

[l+1,l]
m

ρm
A[ll]

,
w[l+1,r]M

[l+1,r]
m

ρm
A[ll]

], for m ∈ N.

Since ρM [1,r] < ρA[ll] , we have

lim
m→∞

w[l+1,r]M
[l+1,r]
m

ρm
A[ll]

= 0,

a contradiction. Thus, w[l+1,r] = 0. It follows from (22) and from w[l+1,r] = 0

that we have w[1,l]M
[1,l] = ρA[ll]w[1,l], i.e., w[1,l] is the maximal eigenvector of
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M [1,l], and

[ρA[ll]w[1,l−1], ρA[ll]wl] = [w[1,l−1], wl]

[
M [1,l−1] 0
C[l,l−1] A[l,l]

]
(22)

= [w[1,l−1]M
[1,l−1] + wlC

[l,l−1], wlA
[l,l]].

Clearly, wl is the maximal eigenvector of A[ll] and since A[ll] is primitive, then

wl > 0. The rest of the proof runs the same as Lemma 5, we only sketch the

proof. It follows from (22), we obtain

wlC
[l,l−1] = [wlA

[l,1], wlA
[l,2], . . . , wlA

[l,l−1]].

Since M satisfies (H2), A[l,j] ̸= 0 ∀1 ≤ j < l. Using the same argument as that

of Lemma 4 along with the fact that all diagonal blocks of M [1,l] are primitive

(cf. (H1)), we deduce that there exists a large ml ∈ N such that A
[l,j]
ml is a full

matrix ∀1 ≤ j < l. This means that

ρ
A

[ll]
ml

w[1,l−1] = w[1,l−1]M
[1,l−1]
ml

+ wlC
[l,l−1]
ml

≥ wlC
[l,l−1]
ml

= [wlA
[l,1]
ml

, wlA
[l,2]
ml

, . . . , wlA
[l,l−1]
ml

] > 0

This shows that w[1,l−1] > 0. This completes the proof.

Theorem 14 (r > 2). Let S = {pi}Li=1 be a 1-spread model and Sf= {qi}Li=1

be the 1-spread model with a frozen symbol f ∈ A = {ai}Ki=1. Let M be the

associated ξ-matrix of Sf and of the form (4), where M is as (24). Suppose M

satisfies conditions (H1), (H2) and ρM = ρA[ll] for some 1 ≤ l ≤ r. Then

1. The values sfb (a) can be calculated as follows.

sfb (a) =

 0 if b ∈ VM [1,l] , a ∈ VM [1,l−1] ,
v̄Ml

(a) > 0 if b ∈ VM [1,l] , a ∈ VM [l,r] ,
0 if b ∈ VM [(l+1),r] , a ∈ VM [1,l] ,

(23)

where v̄Ml
is the positive normalized maximal eigenvector of Ml.

2. By using the same scheme on Ml+1 as above, the values of sfb (a) for

b ∈ VM [(l+1),r] , a ∈ VM [(l+1),r] can be computed in the same fashion. Fur-

thermore, sff (a) = 0 ∀a ∈ VM and sff (f) = 1.
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Remark 15. When all the component matrices in the form

M =


A[11] 0 0 0
A[21] A[22] 0 0
... · · · . . . 0

A[r1] · · · · · · A[rr]

 (24)

of the ξ-matrix M are primitive (H1) and satisfy (H2) and there is a component

A[l,l] which has the maximal eigenvalue ρA[l,l] the same as the maximal eigen-

value ρM of the ξ-matrix M , Theorem 14 says that, if the initial type b is not a

frozen type, then the spread rate of type a is positive only when b ∈ VM [1,l] and

a ∈ VM [l,r] . It means that individuals of type a only survive eventually only in

the cases where b ∈ VM [1,l] and a ∈ VM [l,r] .

Proof. The proof is obtained by combining the same proof as that of Theorem

8 and Lemma 13.

Example 16. Suppose

M =

[
M 0
C 1

]
=


A[11] 0 0 0
A[21] A[22] 0 0
A[31] A[32] A[33] 0
c[31] c[32] c[33] 1



=



1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0
0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 1


∈ R2+3+2+1,

where

A[11] =

[
1 1
1 0

]
, A[22] =

 1 1 1
1 1 1
1 1 1

 , A[33] =

[
1 1
1 1

]
.

Clearly, M satisfies the conditions (H1) and (H2). Since l = 2, i.e., ρM =

ρA[22] = 3, Theorem 14 is applied to show that

sfb (a) =

 0 if b ∈ {a1, . . . , a5}, a ∈ {a1, a2},
v̄M2(a) > 0 if b ∈ {a1, . . . , a5}, a ∈ {a3, . . . , a8},

0 if b ∈ {a6, a7}, a ∈ {a1, . . . , a5},
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where

M2 =


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 1 1 1 1 0
1 1 1 1 1 0
0 1 0 1 1 1

 ∈ R3+2+1.

Next, Proposition 2 is applied to calculate the values of sfb (a) for b ∈ {a6, a7}
and a ∈ {a6, a7}. That is

sfb (a) = v̄M3
(a) for b ∈ {a6, a7} and a ∈ {a6, a7}.

where

M3 =

 1 1 0
1 1 0
1 1 1

 ∈ R2+1.

Finally, sa8
a8
(a) = 0 ∀a ∈ {a1, . . . , a7} and sa8

a8
(a8) = 1.

3.4 1-spread model with a frozen set: single layer

Let S = {pi}Li=1 be a 1-spread model and F = {fi}Ri=1 ⊆ A be a subset of

the symbol set A. For fi ∈ F and pfi ∈ S with p
(0)
fi

= fi ∈ F , we replace the

pattern pfi with p̂fi = (p
(0)
fi

; p
(1)
fi

) = (fi; fi). We write SF = ∪R
i=1 ((S\pfi) ∪ p̂fi)

and call it the 1-spread model with a frozen set F . Let ξF be the associated

substitution and MF be the corresponding ξF -matrix. Similarly, we have

MF =

[
M 0
C MF

]
.

Since MF may not irreducible, thus we assume that

M =


A[11] 0 0 0
A[21] A[22] 0 0
... · · · . . . 0

A[r1] · · · · · · A[rr]

 and MF =


B[11] 0 0 0
B[21] B[22] 0 0
... · · · . . . 0

B[s1] · · · · · · B[ss]

 ,

where A[ii] and B[jj] are irreducible ∀1 ≤ i ≤ r and 1 ≤ j ≤ s. Suppose

C ̸= 0, M and MF satisfy conditions (H1) and (H2), then the values sFb (a) for

a, b ∈
(
∪r
i=1A

[ii]
)
∪
(
∪s
j=1B

[jj]
)
can be calculate by Theorem 14.
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4 1-spread model with a frozen symbol: con-
stant and increasing range

Though the following Lemma appears in [3], we address the proof for readers’

convenience.

Lemma 17 (Lemma 2 [3]). Let {an}, {bn} be real sequences and {bn}, {dn} be

positive real sequences. Suppose

lim
n→∞

an
bn

= lim
n→∞

cn
dn

= L.

Then,

lim
an + cn
bn + dn

= L.

Furthermore, suppose that limn→∞
∑n

j=1 bj = +∞. Then,

lim
n→∞

∑n
j=1 aj∑n
j=1 bj

= L.

Proof. The equality limn→∞
an+cn
bn+dn

= L is obvious, and thus we only prove the

second part. We claim that for every m̄ > L and every m < Lk, we have

lim sup
n→∞

a1 + · · ·+ an
b1 + · · ·+ bn

≤ m̄, and

lim inf
n→∞

a1 + · · ·+ an
b1 + · · ·+ bn

≥ m.

Indeed, since there exists N1 ∈ N such that an

bn
< m̄ for all n ≥ N1, for all

n ≥ N1 we have an < m̄bn and

a1 + · · ·+ an
b1 + · · ·+ bn

=
a1 + · · ·+ aN1

b1 + · · ·+ bn
+

aN1+1 + · · ·+ an
b1 + · · ·+ bn

<
a1 + · · ·+ aN1

b1 + · · ·+ bn
+ m̄

bN1+1 + · · ·+ bn
b1 + · · ·+ bn

<
a1 + · · ·+ aN1

b1 + · · ·+ bn
+ m̄.

We note that N1 is fixed and limn→∞
∑n

j=1 bj = +∞. Therefore,

lim sup
n→∞

a1 + · · ·+ an
b1 + · · ·+ bn

≤ lim sup
n→∞

(
a1 + · · ·+ aN1

b1 + · · ·+ bn
+ m̄

)
= m̄.

For the other part, since there exists N2 ∈ N such that an

bn
> m for all n ≥ N2,

using the same argument again, we have

lim inf
n→∞

a1 + · · ·+ an
b1 + · · ·+ bn

≥ lim inf
n→∞

(
a1 + · · ·+ aN2

b1 + · · ·+ bn
+m

bN2+1 + · · ·+ bn
b1 + · · ·+ bn

)
= m.
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The proof is thus completed.

Theorem 18. Let S = {pi}Li=1 be a spread model and Sf = {qi}Li=1 be the

spread model with a frozen symbol f ∈ A = {ai}Ki=1. Suppose {kn}∞n=1 ⊆ N is a

sequence of natural numbers with sn :=
∑n

i=1 ki → ∞ as n → ∞. Then, for all

a, b ∈ A, we have

sfb (a, {kn}∞n=1) = sfb (a). (25)

In particular, if kn = k for all n ∈ N, (25) holds true as well.

Proof. It suffices to prove (25) for the case that kn = k for all n ∈ N, since all

the rest can be treated similarly. For p ∈ S with p(0) = b ∈ A and for a ∈ A,

the value sfb (a) is calculated. By denoting σ
(i)
b =

∣∣Σi(τp)
∣∣, we have∣∣∣∆k(n+1)

kn (τfp )
∣∣∣ = σ

(kn+1)
b + · · ·+ σ

(k(n+1))
b .

Thus,

sfb (a; {kn}∞n=1) = lim
n→∞

sfb (a; [kn+ 1, k(n+ 1)])

= lim
n→∞

Oa(τ
f
p |∆k(n+1)

kn (τf
p )
)∣∣∣∆k(n+1)

kn (τfp )
∣∣∣

= lim
n→∞

Oa(τ
f
p |Σ(kn+1)

b

) + · · ·+Oa(τ
f
p |σ(k(n+1))

b

)

σ
(kn+1)
b + · · ·+ σ

(k(n+1))
b

Let an = Oa(τ
f
p |σ(n)

b

) and bn = σ
(n)
b ∀n ∈ N, then it follows from Lemma 17 and

from (26) that we have

sfb (a; {kn}∞n=1) = lim
n→∞

Oa(τ
f
p |σ(kn+1)

b

) + · · ·+Oa(τ
f
p |σ(k(n+1))

b

)

σ
(kn+1)
b + · · ·+ σ

(k(n+1))
b

= lim
n→∞

Oa(τ
f
p |σ(n)

b

)

σ
(n)
b

= sfb (a).

This completes the proof.

5 m-spread models

In [3], the authors develop a methodology for calculating the spread rate of

m-spread models. The method developed in this article allows us to calculate
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Figure 4: Formation of m-spread model with a frozen symbol f

the spread rate for the m-spread model with frozen symbols. We simply outline

the following methodology.

Let 1 ≤ m ∈ N, and A = {ai}Ki=1 be a type set. For a finite set F ⊆ ∆m,

a function p : F → A is called an m-spread pattern (m-pattern), and F = Fp

is the support of p. Let Pm be the set of m-patterns. We define p(0) = p|∆m−1

and for all g ∈ Fp with |g| = 1 and p(g) := p|∆g
m−1

∈ Pm−1. Following the

notations and terminology of 1-spread models, we write p = (p(0); p(1)) as (1),

and S = {pi}Li=1 ⊆ Pm is called an m-spread model if for all p ∈ S and g ∈ Fp

with |g| = 1, there exists a unique q ∈ S such that q(0) = p(g). Suppose S is an

m-spread model and p ∈ S, the infinite spread pattern induced from p, say τp,

is similarly defined.

Fix f ∈ A, if f first appears in some p ∈ S on g ∈ Fp and |g| = r ≤ m. More

precisely, p(g) = f , and there is no ancestor h of g with p(h) = f . The pattern

p|∆g
m−r

is transformed as follows: 1) The set ∆g
m−r is replaced by a path g = gr,

gr+1, . . . , gm of length m − r; and 2) Define all types in this path by f ′s. We

denote the resulting pattern by p̄f . The underlying reason for defining p̄f is

that if p(g) = f and f becomes non-infectious, then the type f cannot produce

any other type than f . It is easily seen that the modified Sf := {(p̄i)f}Li=1 is

an m-spread model, and we call it the m-spread model with a frozen symbol f .

This process is illustrated in Figure 4.

To calculate the spread rates (2) for an m-spread model, a method that
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transforms an m-spread model to a 1-spread model (call it induced model) is

proposed. For an m-spread model S, we define a new type set A by collecting

α ∈ Pm−1 in which α appears in Fp|∆m−1
or Fp|∆g

m−1
for some p ∈ Pm ∩

S and g ∈ Fp with |g| = 1. For q ∈ Pm−1, we denote by α(q) ∈ A the

corresponding transformation from Pm−1 to A. For the type set A, and p =

(p(0); p(g1), . . . , p(gd(1)
p
)) ∈ S, the associated ‘1-spread model’ is defined as

S := {p̂i = (α(p
(0)
i );α(pi(g1)), . . . , α(pi(gd(1)

pi

)))}Li=1.

Clearly, S = {p̂i}Li=1 is an 1-spread model with the type set A. Suppose

{kn}∞n=1 ⊆ N and sn =
∑n

n=1 ki → ∞ as n → ∞. The formula for the spread

rate of type a in τp̂|∆sn+1
sn (τp̂)

is established (Theorem 4 of [3]):

sp̂(a, {kn}∞n=1) = lim
n→∞

Oa(τp̂|∆sn+1
sn (τp̂)

)∣∣∆sn+1
sn (τp̂)

∣∣ =
∑

α∈θ(a)

v(α), (26)

where v is the right maximal eigenvector of the primitive ξ-matrix M, and

θ(a) = {α ∈ A : α = α(p(0)) ∈ Pm−1 and p(0)(ϵ) = a}.

If Sf := {(p̄i)f}Li=1 is the m-spread model with a frozen symbol f , two

conditions proposed in Section 2.2 are no longer true, so the associated ξ-matrix

M = Mf is not a primitive matrix. However, combining Theorem 18, Theorem

14 and the discussion in Section 3.42, our method still works after rearranging

M in the form of the irreducible components and combining it with formula

(26).

6 Numerical results

This section is devoted to providing examples of spread models with different

structures in terms of irreducible decomposition. More specifically, each of these

examples represents one of the following three classes of spread models:

1. all A[ii]’s are primitive matrices and all ρA[ii] ’s are distinct;

2. all A[ii]’s are primitive matrices and some ρA[ii] ’s are coincident;

2In general, the ξ-matrix M is not necessarily of the form (4), however, it must be of the
form of a certain ξ-matrix derived from a 1-spread model with a frozen set.
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3. some A[ii]’s are irreducible but not primitive.

In particular, these examples cover not only the class discussed in the previous

sections (item 1) but the classes under more general settings (items 2 and 3).

6.1 Experiment 1: primitive components, distinct spec-
tral radii

Let A = {1, 2, 3, 4, 5, 6, 7} be a type set of a spread model S, M be the associated

ξ-matrix of S that is defined as

M =

 A O O
C B O
D E 1

 =



1 1 1 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 1 0
1 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 1 0 1 0 1


,

It is to be noted that this matrix satisfies (H1) and (H2). By setting

M1 :=

[
B 0
E 1

]
,

we have, as a consequence of Theorem 8, that

sb(a) =


v̄M(a) if b ∈ {1, 2, 3}, a ∈ A,

0 if b ∈ {4, 5, 6}, a ∈ {1, 2, 3},
v̄M1

(a) if b ∈ {4, 5, 6}, a ∈ {4, 5, 6, 7} ∪ {f},
0 if b ∈ {7}, a ∈ {1, 2, 3, 4, 5, 6},
1 if b ∈ {7}, a ∈ {7}.

(27)

Note that the right eigenvectors vM and vM1
, associated with the eigenvalues

ρ(M) and ρ(M1), respectively, can be chosen such that

vM =

 I
(ρAI −B)−1C

(ρA − 1)−1(D + E(ρAI −B)−1C)

 vA,

vM1
=

[
I

(ρB − 1)−1E

]
vB ,

which are clearly positive vectors since A,B are primitive matrices, ρA > ρB >

1, and (I − B
ρA

)−1 =
∑∞

i=0(
B
ρA

)i is positive. Given the ancestor b, the spread

rates sb(a) as well as the sizes of the population are illustrated in Figure 5, 6,

and 7, which corresponds to the cases b ∈ {1, 2, 3}, b ∈ {4, 5, 6}, and b ∈ {7}
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(a) spread rate (b) population size

Figure 5: Experiment 1: spread rate sb(a) for b ∈ {1, 2, 3}

(a) spread rate (b) population size

Figure 6: Experiment 1: spread rate sb(a) for b ∈ {4, 5, 6}

accordingly. As is consistent with Theorem 8, the convergence of the spread

rates to the normalized eigenvectors v̄M, v̄M1
, and 1 is observed in the figures,

and the slope of the log population is seen to be log ρA, log ρB , and 0.
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(a) spread rate (b) population size

Figure 7: Experiment 1: spread rate sb(a) for b ∈ {7}

6.2 Experiment 2: primitive components, coincident spec-
tral radii

Let A = {1, 2, 3, 4, 5, 6, 7} be a type set of a spread model S and M be the

associated ξ-matrix of S that is defined as

M =

 A O O
C B O
D E 1

 =



1 1 1 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1 1 1 0
1 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 1 0 1 0 1


.

Though (H2) is still satisfied in this case, (H1) is clearly not true, since A = B.

Let

M1 :=

[
B 0
E 1

]
,

vA and wA (respectively, vB and wB) be the right and left eigenvectors of A

(respectively, B) associated with ρM such that wT
AvA = 1 (respectively, wT

BvB =

1). Note that M and M1 each has exactly one left and one right eigenvector

(up to rescaling) associated with ρM. Let the right eigenvectors vM and vM1

associated with ρM = ρM1
be chosen as

vM =

 O
vBw

T
BC

(ρA − 1)−1EvBw
T
BC

 vA and vM1
=

[
I

(ρB − 1)−1E

]
vB .
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(a) spread rate (b) population size

Figure 8: Experiment 2: spread rate sb(a) for b ∈ {1, 2, 3}

Then, since M has a unique Jordan block associated with ρM, whose size is 2,

one can show that Mn

nρn−1
M

converges as n tends to infinity. Furthermore, by a

straightforward block-wise estimation of Mn

nρn−1
M

, one derives that

lim
n→∞

1

nρn−1
M

·Mn = vM
[
wT

A O O
]
.

We should note that vM(i) and vM1(i) are positive if i ∈ {4, 5, 6, 7} since vA,

vB , wA, and wB are all positive and (I − B
ρA

)−1 =
∑∞

i=0(
B
ρA

)i is positive. It

then follows that

sb(a) =


v̄M(a) if b ∈ {1, 2, 3}, a ∈ A,

0 if b ∈ {4, 5, 6}, a ∈ {1, 2, 3},
v̄M1

(a) if b ∈ {4, 5, 6}, a ∈ {4, 5, 6, 7} ∪ {f},
0 if b ∈ {7}, a ∈ {1, 2, 3, 4, 5, 6},
1 if b ∈ {7}, a ∈ {7}.

(28)

Given the ancestor b, the spread rates sb(a) as well as the sizes of the population

are illustrated in Figure 8, 9, and 10, which corresponds to the case b ∈ {1, 2, 3},
b ∈ {4, 5, 6}, and b ∈ {7} accordingly. As is consistent with Theorem 8, the

convergence of the spread rates to eigenvectors v̄M, v̄M1 , and 1 are observed in

the figures, and the slope of the log population is seen to be log ρM, log ρM, and

0.
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(a) spread rate (b) population size

Figure 9: Experiment 2: spread rate sb(a) for b ∈ {4, 5, 6}

(a) spread rate (b) population size

Figure 10: Experiment 2: spread rate sb(a) for b ∈ {7}
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(a) spread rate (b) population size

Figure 11: Experiment 3: spread rate sb(a) for b ∈ {1, 2, 3}

6.3 Experiment 3: irreducible components

Let A = {1, 2, 3, 4, 5, 6, 7} be a type set of a spread model S and M be the

associated ξ-matrix of S that is defined as

M =

 A O O
C B O
D E 1

 =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0
1 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1


.

Since A = BT is an irreducible matrix of period 3 and D = O, the hypotheses

(H1) and (H2) are clearly not satisfied. As a result, one observes that M3 falls

within the class of the previous section. This therefore leads to a non-convergent

spread rate sb(a), as is shown in Figure 11, 12, and 13, which corresponds to

the cases b ∈ {1, 2, 3}, b ∈ {4, 5, 6}, and b ∈ {7}, respectively. In fact, it is seen

in these figures that the period of the spread rate coincides with the period of

the matrices, and the sizes of the population have polynomial growth.

7 Conclusion and open questions

As we stated in the introduction, working with a spread model with frozen

symbols is essential in the decision making for the disease control when we

want to predict what happens to the spread rates of other existing types after
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(a) spread rate (b) population size

Figure 12: Experiment 3: spread rate sb(a) for b ∈ {4, 5, 6}

Figure 13: Experiment 3: spread rate sb(a) for b ∈ {7}
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blocking certain type. In this article we investigate the spread model with a

frozen symbol and frozen sets and several results are proved. First of all, in

Proposition 2 (1 irreducible component), Theorem 8 (2 irreducible components)

and Theorem 14 (r irreducible components), we give complete characterizations

of the spread rate for the 1-spread model with a frozen symbol within a single

layer. Secondly, we extend the preceding results to the case where the spread

rate is calculated with a constant or increasing ranges (Theorem 18). Finally,

we also discuss the m-spread model with frozen symbols in Section 5.

The significance of our work is that we derive a method in Section 3 to

deal with the irreducible components in the ξ-matrix. In the classic theory

of substitution, the associated ξ-matrices are assumed to be primitive so that

some beautiful results can be established. But, often when we consider a spread

model with frozen symbols, the associated ξf -matrix of the frozen model is no

longer primitive although the original ξ-matrix of the original spread model is

primitive. Therefore, how to deal with the non-primitive components in the ξf -

matrix in order to arrive at the solutions we are looking for becomes essential

in the whole work.

However, the results we established in this paper are far from being conclu-

sive, we still have some more work needed to be done before we fully comprehend

the general cases. Here, we list problems below for the future study.

Problem 19. Conditions (H1) and (H2) should be removed in general situa-

tions. However, there remain following issues which needs to be addressed.

1. There exists 1 ≤ i ̸= j ≤ r with 1 < ρA[ii] = ρA[jj] .

2. For all 1 ≤ i ≤ r, A[ii] are not all primitive, e.g., irreducible.

3. There exists A[ij] = 0, for some 2 ≤ i ≤ r, and 1 ≤ j < i.

Moreover, when we start to consider the randomness of the spread model as

we did in our previous work [2] and [3], the following problem becomes interest-

ing and it will be discussed in our next paper.

Problem 20. What is the proper setting for the random spread model with

frozen symbols and what happens to the new spread rate? How does it relate to

the topological spread model with frozen symbols?
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