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Abstract

When a symbol or a type has been “frozen” (namely, a type of which
an individual only produces one individual of the same type), its spread
pattern will be changed and this change will affect the long-term behavior
of the whole system. However, in a frozen system, the ξ-matrix and
the offspring mean matrix are no longer primitive so that the Perron-
Frobenius theorem can not be applied directly when predicting the spread
rates. In this paper, our goal is to characterize these key matrices and to
analyze the spread rate under more general settings both in the topological
and random spread models with frozen symbols. More specifically, We
propose an algorithm for explicitly computing the spread rate and relate
the rate with the eigenvectors of the ξ-matrix or offspring mean matrix.
In addition, we reveal that the growth of the population is exponential
and that the composition of the population is asymptotically periodic.
Furthermore, numerical experiments are provided as supporting evidence
for the theory.

When a pandemic happens, modelling the spread of disease is al-

ways an important method to predict the future situation and plays

a key role in disease control, prevention and decision making. In this

manuscript, we propose two mathematical models called spread mod-

els with frozen symbols from the topological and random perspectives,

respectively. These models can be used to describe the phenomenon

after some prevention and control measures are adopted and the viral

spread pattern is changed. We have found the long-term behavior of
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the spread rate for each type in these models. In particular, we de-

rive a method to deal with the non-primitive ξ-matrix and offspring

mean matrix while the primitive property is usually the key sufficient

condition to study the limit behavior of the matrix using its maximal

eigenvalue and the corresponding eigenvector in the classic theories.

1 Introduction

1.1 Motivations

Pandemic transmission has been a recurring theme in research in recent years

and is a topic that has been garnering much public attention, owing largely

to the potential socioeconomic impacts accompanying the spread of infectious

diseases. Numerous models have been proposed in the literature to explain

and predict the spread of the diseases, which has substantially benefited the

governing bodies charged with disease control and public health measures. This

is clearly seen in the case of COVID-19 after its outbreak in late 2019.

For a better grasp of both the short-term and long-term behavior of the

spread of the coronavirus, techniques from multiple fields of study have been

applied, including those in machine learning [1] as well as random stochastic

models [7, 10], in which stochastic phenomena are present and sensitive to pa-

rameters as well as to initial conditions. Many of the works investigating the

spread of the coronavirus incorporate a type of model that classifies individu-

als into the three major categories: susceptible, infected, and recovered. This

so-called SIR model along with its variants has proven effective in investigating

the dynamics of the number or fraction of individuals in each category, and

various aspects of the model are explored in the hope of arriving at a better

conception of disease transmission. In particular, the basic reproduction num-

ber, that is, the expected number of infected cases generated by a single existing

case, is closely related to the stability as well as equilibria of the systems. This

number is therefore widely studied under different model assumptions, with

data usually compared before and after containment measures have been taken

[6, 9, 11, 13, 14, 15, 16, 17, 18] to explain any drop in the number of infected

cases. This ease of pandemic is also observed using alternative models. For
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example, the logistic model considered in [8, 19, 20] aptly portrays the expo-

nential decay of the increase in cases. Similar characteristics are also qualita-

tively captured by the spread model considered in the authors’ previous work

[5] by introducing the notion of frozen symbols under the assumption that the

offspring matrix is primitive. Nevertheless, the decay of the infected cases in

the number remains unknown in general, which motivates the very study.

In this article, we generalize our previous works [3, 4, 5] on the topological

spread model (and respectively, the random spread model) to the case where the

matrix of substitution (respectively, the offspring mean matrix) is not necessarily

primitive, and study the spread rate when individuals of a particular type are

forced to give birth only to offspring of the same type. More precisely, this paper

aims to characterize the spread rates of general spread models and to explain

the periodic behavior of the spread rate that was discovered in the previous

work [5].

1.2 Setup for the topological spread model with a frozen
symbol

The setup for the topological model without a frozen symbol is presented, and

we follow the notation of [5] for the reader’s convenience.

Let A = {ai}Ki=1 be a type set, and Td be the conventional d-tree for d ∈ N

with the root ϵ. Define Σs = {g ∈ Td : |g| = s} for s ∈ N and ∆n(h) = {g ∈ Td :

g is a descendant of h with |g − h| < n}, where |g − h| stands for the length of

the unique path from h to g and |g| = |g − ϵ|. We simply write ∆n(ϵ) = ∆n =

∪n−1
i=0 Σ

i for h = ϵ. Denote ∆n
m = ∆n\∆m = {g ∈ Td : m ≤ |g| < n}, and for

F ⊆ Td we define Fn
m = F ∩∆n

m. Let F ⊆ ∆1, a function p : F → A is called an

1-pattern and F = Fp is called the support of p. Let P1 be the collection of all 1-

patterns, and for p ∈ P1, we write p(0) = p(ϵ) ∈ A and for g1, . . . , gdp
∈ Fp with

|g| = 1, dp ∈ N, we write p(1) = (p(g1), . . . , p(gdp)). Therefore, the 1-pattern p

(see Figure 1) may also be stated as follows.

p = (p(0), p(1))

= (p(ϵ); p(g1), . . . , g(gd(1)
p
)).

Let S = {pi}Li=1 ⊆ P1 and set d = maxp∈S dp. The corresponding d-tree Td is
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p(ϵ)

p(g1) p(g2)

. . .

p(gdp−1) p(gdp
)

p(0)

p(1)

Figure 1: pattern

S

p1 p2 p3

Sf

(p̄1)f (p̄2)f (p̄3)f

Figure 2: spread model

specified in the preceding paragraph, and other notations, e,g., ∆n
m, Fn

m, etc.,

are also defined. The set S is called a spread model if ∀p ∈ S and ∀g ∈ Fp with

|g| = 1, then there exists a unique q ∈ S such that q(0) = p(g). See Figure 2 for

an example of a spread model with 3 types.

Given a 1-spread model S and p ∈ S, we define τ∞p as follows, for which

the process is illustrated in Figure 3. Let τ0p = p(0) and τ1p = p, for g ∈ Fp

with |g| = 1, since S is a 1-spread model, there exists a unique qg ∈ S with

q
(0)
g = qg(ϵ) = p(g). As a result, we replace p(g) by the 1-pattern qg ∀g ∈ Fp

with |g| = 1 to generate a pattern τ2p . After τnp is built, we substitute the pattern

qg for the symbol τnp (g), g ∈ Fτn
p

with |g| = n, to generate τn+1
p . Lastly, we

define τp = τ∞p = limn→∞ τnp and call it the infinite spread pattern induced from

p with respect to S (induced spread pattern from p). Given τp for some p ∈ S
and p(0) = p(ϵ) = b ∈ A, suppose F ⊂ Fτp is a finite set, we denote by τp|F the

subpattern of τp along the subset F , that is, τp|F = {τp(g) : g ∈ F}. Given a

sequence {kn}∞n=1 ⊆ N, the following value sb(a;S, {kn}∞n=1) is of interest and

significance for the spread model S.

sb(a;S, {kn}∞n=1) = lim
n→∞

sb(s; [sn, sn+1]) = lim
n→∞

Oa(τp|∆sn+1
sn (τp)

)
∣∣∆sn+1

sn (τp)
∣∣ , a ∈ A,

where sn =
∑n

i=1 ki and Oa(τp|F ) is the number of occurrences of the type a in

the range F .

Now we consider a 1-spread model S = {pi}Li=1 and introduce its induced

spread models with a frozen symbol. Pick f ∈ A and pf ∈ S so that p
(0)
f = f

(which is unique since S is a spread model). The pattern pf is changed as

follows.

p̄f = (p̄
(0)
f ; p̄

(1)
f ) = (f ; f).

Define Sf = (S\{pf}) ∪ {p̄f} and call it the 1-spread model with frozen symbol

f (see Figure 4 for an example). Given Sf and the induced spread pattern from
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τ∞p

τ1p
τ2p

τ3p

···

Figure 3: induced spread pattern

S

p1 p2 p3

Sf

(p̄1)f (p̄2)f (p̄3)f

Figure 4: Spread model

p, say τfp . Given a sequence {kn}∞n=1 ⊆ N and sn =
∑n

i=1 ki, the objective of

this study is to calculate the spread rate

sfb (a;S, {kn}∞n=1) = sb(a;Sf , {kn}∞n=1).

1.2.1 Previous results for topological spread models with a frozen
symbol

Let f ∈ A be a frozen symbol, Sf be the 1-spread model and f ∈ A be a

frozen symbol. The corresponding substitution map is denoted by ξf . Denote

by M0 = Mξ and M = Mξf the associated ξ-matrix and ξf -matrix respectively

(The ξ-matrix and ξf -matrix are defined in Section 2). Since M0 is a K ×K

matrix, we denote by GM0
= (VM0

, EM0
) the associated graph of M0, that

is, VM0
= A, and EM0

= {(ai, aj) ∈ VM0
× VM0

: M0(ai, aj) > 0}. We can

readily verify that M is derived from M0 by deleting all edges with the property

(f, a) ∈ EM0 . Therefore, we obtain

M =

[
M 0
C 1

]
, (1)

where C ∈ R1×(K−1) and M ∈ R(K−1)×(K−1). We stress that two additional

hypotheses about the complexity of the spreading are made as in [5], namely,

limn→∞ |ξ(α)| = ∞ for all α ∈ A and there exists ξ(α0) beginning with α0.

Both conditions ensure that the associated ξ-matrix M0 is primitive, that is,

(M0)
k > 0 for some k ∈ N. However, the matrix M defined in (1) is not
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necessary primitive. Hence, we suppose

M =




A[11] 0 0 0
A[21] A[22] 0 0
... · · · . . . 0

A[r1] A[r2] · · · A[rr]


 (2)

is lower triangular according to the irreducible decomposition of M. Here and

subsequently, we use a ∈ VA to denote the symbol a is in the index set of the

matrix A.

It is surprising that the explicit value of the spread rate sfb (a;S, {kn}∞n=1)

depends heavily on the choice of the ‘initial type’ b and the ‘target type’ a.

For r = 2, the values of sfb (a;S, {kn}∞n=1) for (a, b) ∈ A × A are characterized

in (Theorem 7, [5]), and we provide an algorithm for characterizing the ex-

plicit values of sfb (a;S, {kn}∞n=1) for r ≥ 2 (Theorem 11, [5]) as well. However,

these results are far from being conclusive as two major conditions are imposed,

namely, (1). 1 < ρ(A[ii]) ̸= ρ(A[jj]) for all 1 ≤ i ̸= j ≤ r, where ρ(A[ii]) is the

unique eigenvalue of A[ii] with |ρ(A[ii])| > |λ| for any other eigenvalues λ of A[ii]

and i ≥ 1 and (2). Each A[ii] is primitive for all 1 ≤ i ≤ r. Conditions (1) and

(2) appear not to be abandoned in the proofs of Theorem 7 and Theorem 11 of

[5]. Our primary result in this article is to give a complete characterization of

the exact values of sfb (a;S, {kn}∞n=1) for (a, b) ∈ A × A without condition (1)

or (2). Define sfb (a) := sfb (a;S, {kn}∞n=1) with kn = 1 ∀ n ≥ 1 for all a, b ∈ A.

In section 3, we prove the limit sfb (a) exists and construct an algorithm to con-

firm sfb (a) > 0 (Theorem 3.1 and Theorem 3.2). Second, in comparison with

the topological spread model, we provide a random version of the spread model

with a frozen symbol. Such a model gives a more realistic picture of the spread

phenomena in the real world. The random spread model with a frozen symbol

will be presented in Section 1.3.

1.3 Random spread model with a frozen symbol

To introduce a spread model using the branching processes, we consider a popu-

lation which starts with one individual and consists of individuals of K different

types, say a1, a2, · · · , aK . Let

Zn = (Zn,1, Zn,2, · · · , Zn,K)
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be the population vector in the nth generation, where Zn,i is the number of

individuals of type ai in the nth generation, i = 1, 2, · · · ,K. Assume that each

individual in the population lives a unit of time and, upon its death, produces

its offspring independent of others in the same generation and in the past of

the population. Assume that the production mechanism of each individual

follows the probability distribution {p(i)(·)}Ki=1, where p
(j)(j1, j2, · · · , jK) is the

probability that an individual of type ai produces j1 children of type a1, j2

children of type a2, · · · , and jK children of type aK . Then the process {Zn}n≥0

is called a K-type branching process with offspring distribution {p(i)(·)}Ki=1.

Let mji = E(Z1,j |Z0 = ei) be the expected value of the number of children

of type aj produced by an individual of type ai, where ei is the unit vector with

1 as its ith component. Then the matrix

M0 ≡ [mji] =




m11 m12 · · · m1K

m21 m22 · · · m2K

...
...

...
mK1 mK2 · · · mKK




is called the offspring mean matrix for this branching process {Zn}n≥0. More-

over, if M2
0 = M0 ·M0 and Mn

0 = Mn−1
0 ·M0 for all n ≥ 3, then the (j, i)-entry

m
(n)
j,i of the matrix Mn

0 is the expected value

m
(n)
ji = E(Zn,j |Z0 = ei)

of the number of offspring of type aj in the nth generation of the population

initiated by an ancestor of type ai.

The behavior of the offspring matrix can provide the information about the

branching process in the long run. In the theory of branching processes, a

classical theorem tells us that, when the branching process is non-singular and

the offspring mean matrix M0 is primitive with a maximal eigenvalue ρ(M0) >

1, the population vector converges geometrically almost surely:

lim
n→∞

Zn

ρ(M0)n
= vt

M0
W a.s.

where vM0 is the normalized right eigenvector associated with ρ(M0) and W is

a random variable. We refer readers to Athreya and Ney [2] for more details.

It is known, from Ban et al. [3], that each multitype branching process

induces a random spread model. Therefore, we assume that, for example, the
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spreading of certain kind of viruses can be modeled by a K-type branching pro-

cess {Zn}n≥0 with offspring distribution {p(i)(·)}Ki=1, Z0 = el and the offspring

mean matrix M0. That is, individuals of different types in this population can

be considered as patients in different categories such as highly contagious, mod-

erately contagious, mildly contagious and so on. At some point, some epidemic

prevention measures are applied to decrease the spread of this infectious disease.

For instance, people who are tested and found to be highly contagious may be

put in quarantine so that they will not pass the virus to others. Therefore, the

spread pattern of this type changes and a random spread model with frozen sym-

bols can be used to model this change. First of all, the category in which people

are put in quarantine is labeled as type aK for convenience and individuals in

this category change their spread pattern so that, in branching language, each

only produces exactly one “child” of the same type with probability one. Note

that, to avoid the trivial case, we also assume that l ̸= K. Therefore, this type

aK is considered to be “frozen” or “stopped” and aK is called a frozen type or a

frozen symbol. The change of the spread pattern of type aK makes a difference

in the branching mechanism and therefore affects the spread rate. Define the

probability distribution {p∗(i)(·)}Ki=1 to be the modified offspring distribution

after the type aK is frozen as follows: p∗(i)(j1, j2, · · · , jK) = p(i)(j1, j2, · · · , jK)

for all i = 1, 2, · · · ,K − 1 and all j1, · · · , jK ∈ N0 and

p∗(K)(j1, j2, · · · , jK) =

{
1, if (j1, · · · , jK) = eK ;
0, otherwise.

Let {Z∗
n = (Z∗

n,1, · · · , Z∗
n,K)}n≥0 be the branching process initiated with Z∗

0 = el

and having {p∗(i)(·)}Ki=1 as its offspring distribution. Then, {Z∗
n}n≥0 is called the

associated (modified) branching process with frozen symbol aK for the original

branching process {Zn}n≥0. Let

m∗
ji ≡ E(Z∗

1,j |Z∗
0 = ei) = mji

for all j = 1, 2, · · · ,K and i = 1, 2, · · · ,K − 1 and let

m∗
jK ≡ E(Z∗

1,j |Z∗
0 = eK) =

{
1, if j = K;
0, if j = 1, 2, · · · ,K − 1.

Then the offspring mean matrix for the process {Z∗
n}n≥0 is given by

M ≡ [m∗
ji].
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In such a random model initiated with an individual of type al, we define

the spread rate of the type aj as follows:

sfal
(aj) = lim

n→∞

Z∗
n,j

K∑
j=1

Z∗
n,j

where l, j = 1, 2, · · · ,K. Note that the spread rate sfal
(aj) is a random quan-

tity, and so the first question that may arise is about its existence as a limit

of a sequence of the random variables. If so, in what sense does the limit con-

verge? The classical results in the theory of branching processes already give

the answer when the offspring mean matrix is primitive. However, it is obvious

that the offspring mean matrix M for the associated branching process {Z∗
n}n≥0

with frozen symbol aK is no longer primitive (However, throughout this paper,

we keep the non-singularity for the associated process with frozen symbol to

avoid the trivial cases in which each individual has exactly one offspring.) and

therefore the classical convergence theorems can not be applied to this mod-

ified process directly to find the spread rate of each type. In Section 4, we

will show that the almost sure convergence of the spread rate sfal
(aj), for all

l, j = 1, 2, · · · ,K, still holds for a more general offspring mean matrix M with

some conditions on its covariance matrix.

2 Preliminaries

2.1 Spread rate

Let A = {ai}Ki=1 be a type set and A∗ = ∪∞
n=0An, where An is the set of all n-

blocks, i.e., the blocks with length n ∈ N. Assume S is a 1-spread model with p =

(p(0); p(1)) = (b; p(1)) ∈ S. We called the map ξ : A → A∗ associated substitution

on A if ξ(b) = p1 with length |ξ(b)| = d
(1)
p , where d

(1)
p is the number of g ∈ Fp

with |g| = 1. To keep the notation simple, we defined ξ(w) = ξ(w1) · · · ξ(wn)

for all w = w1 · · ·wn ∈ A∗ and ξ(∅) = ∅. The associated ξ-matrix Mξ :=

[Oai(ξ(aj))] is a K×K matrix, where Oai(ξ(aj)) is the number of ai appearing

in the ξ(aj). Meanwhile, L(w) = (Oa1(w), Oa2(w), ..., Oak
(w)) for all w ∈ A∗.

Let M be the irreducible decomposition of Mξ which is defined in (2).

In Section 3, we will calculate the value sfb (a). More precisely, for all p ∈ S
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with p(0) = b, a = aj and b = ai, we have

sfb (a) = lim
n→∞

Oa(τp|Σn(τp))

|Σn(τp)|
= lim

n→∞

etjM
nei

1KMnei
, (3)

where 1K is a 1×K vector with all its entries all 1.

2.2 Notations and definitions for matrices

For convenience and to simplify the proof in this article, we denote

Mk =



A[kk] 0 0
...

. . . 0
A[rk] · · · A[rr]


 and Mn =




A
[11]
n 0 0 0

A
[21]
n A

[22]
n 0 0

... · · · . . . 0

A
[r1]
n · · · · · · A

[rr]
n



.

Let A be a d × d matrix. An eigenvalue of A is called maximal if it is the

unique eigenvalue ρ(A) of A with |ρ(A)| > |λ| for any other eigenvalues λ of A.

The right eigenvector of the ρ(A), say vA (resp. wA), is called the right (resp.

left) maximal eigenvector of A. In particular, for the matrix M defined in (1)

and (2), we write ρ = ρ(M), v = vM and w = wM .

Suppose B is another d × d matrix, we say A ≤ B if Ai,j ≤ Bi,j for all

1 ≤ i, j ≤ d. Additionally, we say A is primitive if there exists n ∈ N such that

An
i,j > 0 for all 1 ≤ i, j ≤ d. A matrix A is called irreducible if for all 1 ≤ i, j ≤ d

there exists n ∈ N such that An
i,j > 0. A square matrix A satisfying An = A is

called n-periodic.

3 Spread rate for topological spread model

In this section, we first establish the existence of the limit of sfb (a). To do this,

we consider different cases and introduce an algorithm to determine whether

sfb (a) > 0 or not. Theorem 3.1 addresses the case where A[ii] is primitive for all

i = 1, ..., r, while Theorem 3.2 considers the case where A[ii] is irreducible. Both

results provide a complete characterization of the positive spread rate. Finally,

we present the algorithm following Propositions 3.5 and 3.7.

The positivity of the spread rate explains the long-term behavior of the

spread of each type. Namely, when the spread rate of a certain type is positive,

the symbols or the individuals of this type survive in a long run. Therefore, this
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characteristic is a crucial aspect of our study. Theorem 3.1 and 3.2 provide the

general structure of a set that guarantees a positive spread rate. In Section 5,

we give a specific method for identifying the elements of this set.

Theorem 3.1. Suppose A[ii] is primitive for all i = 1, ..., r. Assume b ∈ VA[kk]

for some 1 ≤ k ≤ r. There exists a set Pb with respect to b such that

(i) if a ∈ VA[pp] for all p ∈ Pb, then sfb (a) > 0.

(ii) if sfb (a) > 0, then a ∈ VA[pp] for some p ∈ Pb.

Theorem 3.2. Suppose A[ii] is irreducible with period pi respectively for i =

1, ..., r. Assume b ∈ VA[kk] for some 1 ≤ k ≤ r. Along the subsequence np + z,

where z = 0, ..., p− 1 and p =lcm{pk, ..., pr}, there exists a set Pb;z with respect

to b and z such that

(i) if a ∈ VA[qq] for all q ∈ Pb;z, then sfb (a) > 0.

(ii) if sfb (a) > 0, then a ∈ VA[qq] for some q ∈ Pb;z.

Remark 3.3. Our goal is to determine the situations in which sfb (a) > 0. It is

important to note that by applying the same idea as described in this section, the

actual value of sfb (a) in Theorem 3.1 and Theorem 3.2 can be calculated ( (4)

and (5)). Let wt
i,j (resp. vij) be the left (resp. right) generalized eigenvectors

associated with ρ(M) > 0 which lie in the ith maximal Jordan block for i =

1, ..., d such that wt
i,jM = ρ(M)wi,j +wi,j−1, where j = 1, ..., N and wi,0 = 0.

Suppose the assumption in Theorem 3.1 holds, we obtain

sfb (a) =

∑d
ℓ=1 wℓ,k(b)vℓ,d(a)∑

c∈∪r
h=kVA[hh]

∑d
ℓ=1 wℓ,k(b)vℓ,d(c)

, (4)

where wℓ,k(b) (resp. vℓ,d(a)) is the entry indexed by b (resp a) and a ∈ ∪r
h=kVA[hh] .

Under the assumption in Theorem 3.2, we obtain the value

sfb (a) =

∑d
ℓ=1 wℓ,k(b)(M

zvℓ,d)(a)∑
c∈∪r

h=kVA[hh]

∑d
ℓ=1 wℓ,k(b)(Mzvℓ,d)(c)

. (5)

Before proving Theorem 3.1 and Theorem 3.2, we elaborate on how to find Pb

in Theorem 3.1 (resp. Pb;z in Theorem 3.2) first. Without loss of generality, we
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make a standing assumption that b ∈ V [11], since otherwise, one can construct

an index set

Ik = {k ≤ i ≤ r : A[ik]
n ̸= 0 for some n ∈ N},

and a submatrix M ′ of M that is defined as

M ′ = [A[ij]]ij∈I 2
k :i>j .

This submatrix contains all the offspring information contributed by ancestors

of type b in the sense that

etaM
neb =

{
etaM

′neb if a ∈ ∪n∈Ik
V [nn]

0 otherwise.

We first present the following fundamental lemma, which is frequently used

in the development of our theory.

Lemma 3.4. Suppose A is a d× d non-negative irreducible matrix with period

p. Then, there exist some constants c > 0, 1 > γ > 0, and non-zero matrices

{Bz : 0 ≤ z < p} such that |Amp+z

ρmp+z −Bz| ≤ cγmp+z for all m ≥ 0.

Proof. If A is primitive, or equivalently, p = 1, then we consider the Jordan

form of

A =
[
V1 · · · Vm

]


J1 0

. . .

0 Jm






U t
1
...

U t
m


 =

m∑

i=1

ViJiU
t
i ,

and thus An =
∑m

i=1 ViJ
n
i Ui, where we assume |ρ(J1)| ≥ |ρ(J2)| ≥ · · · ≥

|ρ(Jm)|. Now that A is primitive, we have ρ(A) = |ρ(J1)| > |ρ(J2)|, from which

the lemma follows immediately by taking 1 > γ > |ρ(J2)|/|ρ(J1)|. If p > 1, Ap

is a diagonal block matrix with each block on the diagonal a primitive matrix.

We are then able to apply the case p = 1 to the diagonal blocks of Ap to obtain

the desired estimate. This proof is complete.

Let S := {i : ρ(A[ii]) = ρ(M)}. For each 1 ≤ i ≤ k, define

Si := {i = i1 · · · iℓ : i1 = 1, iℓ = i, ij are distinct s.t. A[ij+1ij ] ̸= 0 ∀j},

N := max#{ℓ : i = i1 · · · iℓ ∈ Si},

12



S′
i := {i ∈ Si : #{j : ij ∈ S } = N} and S′′

i := Si \ S′
i.

In addition, for any ℓ, L, n ∈ Z+, let

Ωℓ,n :=

{
(n1, · · · , nℓ) ∈ Z+ :

ℓ∑

i=1

ni = n− ℓ+ 1

}
,

Ωℓ,n,L := {(n1, · · · , nℓ) ∈ Ωℓ,n : ni ≥ L,∀i}.

It is not hard to see that

A
[i1]
n(

n
N−1

)
ρn−N+1

=
∑

i∈Si

1(
n

N−1

)
∑

(n1,··· ,n|i|)∈Ω|i|,n

A
[i|i|i|i|]
n|i|

ρn|i|
A[i|i|i|i|−1] · · ·A[i2i1]

A
[11]
n1

ρn1
.

(6)

Proposition 3.5. Suppose each block on the diagonal of lower triangular block

matrix M is either primitive or zero. Then, the limit limn→∞
A[i1]

n

( n
N−1)ρn−N+1

exists, and it is non-zero if and only if it is positive if and only if S′
i is nonempty.

Proof. Let ρ be the spectral radius of M . Suppose B[jj] = limm→∞
A[jj]

n

ρn is as

found in Lemma 3.4, for which we may find constants c > 1 and 1 > γ > 0

such that |A[jj′]|, |B[jj′]| ≤ c for all j, j′ and that
∣∣∣A

[jj]
n

ρn −B[jj]
∣∣∣ ≤ cγn. In the

following, we divide our discussion, in terms of i, into two cases and prove

respectively the convergence of the summand in (6).

Case 1: i ∈ S′′
i . We show that the summand of (6) converges to 0 as

n → ∞. Let Λn,L(i) = {(n1, · · · , n|i|) ∈ Ω|i|,n :
∑

(j:ij /∈S ) nj = L} and

α = #{j : ij ∈ S } ≤ N − 1. Then, for all L ̸= 0,

#Λn,L(i) =

(
L+ |i| − α− 1

|i| − α− 1

)(
n− L− |i|+ α

α− 1

)
≤ |i||i|L|i|nα−1,

and thus we have the following estimate for all i ∈ Si and sufficiently large n:

1(
n

N−1

)
∑

(n1,··· ,n|i|)∈Ω|i|,n

∣∣∣∣∣
A

[i|i|i|i|]
n|i|

ρn|i|
A[i|i|i|i|−1] · · ·A[i2i1]

A
[11]
n1

ρn1

∣∣∣∣∣

=
1(
n

N−1

)
n−|i|+1∑

L=0

∑

(n1,··· ,n|i|)∈Λn,L(i)

∣∣∣∣∣
A

[i|i|i|i|]
n|i|

ρn|i|
A[i|i|i|i|−1] · · ·A[i2i1]

A
[11]
n1

ρn1

∣∣∣∣∣

≤ 2α

nα

n−|i|+1∑

L=0

#Λn,L(i) · c|i|γL ≤ (2c|i|)|i|
n


1 +

n−|i|+1∑

L=1

L|i|γL


 .

13



Since it is readily checked that
∑∞

L=1 L
|i|γL < ∞, the claim is proved.

Case 2: i ∈ S′
i. We claim that the summand in (6) converges to

B
[i|i|i|i|]
∗ A[i|i|i|i|−1] · · ·A[i2i1]B

[11]
∗ ,

where

B
[ijij ]
∗ =

{
B[ijij ], if ij ∈ S∑∞

ℓ=0 ρ
−ℓA

[ijij ]
ℓ = (I − ρ−1A[ijij ])−1 if ij /∈ S .

To prove this, define for each n ∈ Z+

C [ijij ]
n =

{
B[ijij ] if ij ∈ S ;

ρ−nA
[ijij ]
n if ij /∈ S ,

so that |C [ijij ]
n | ≤ c. Hence, the summand of (6) can be written as

1(
n

N−1

)
∑

(n1,··· ,n|i|)∈Ω|i|,n

A
[i|i|i|i|]
n|i|

ρn|i|
A[i|i|i|i|−1] · · ·A[i2i1]

A
[11]
n1

ρn1

=
∑

[(nj)ij /∈S ]∈Z|i|−N
+

1(
n

N−1

)
∑

[(nj)ij∈S ]∈
ΩN,n−

∑
(j:ij /∈S ) nj

A
[i|i|i|i|]
n|i|

ρn|i|
A[i|i|i|i|−1] · · ·A[i2i1]

A
[11]
n1

ρn1
,

(7)

whose limit could then be obtained by applying the dominated convergence

theorem. More specifically, given any (nj)ij /∈S ,

1(
n

N−1

)
∑

[(nj)ij∈S ]∈
ΩN,n−

∑
(j:ij /∈S ) nj

∣∣∣∣∣
A

[i|i|i|i|]
n|i|

ρn|i|
A[i|i|i|i|−1] · · ·A[i2i1]

A
[11]
n1

ρn1

∣∣∣∣∣ ≤ c|i|γ
∑

(j:ij /∈S ) nj .

On the other hand, each term on the right-hand side of (7) converges to

C
[i|i|i|i|]
n|i| A[i|i|i|i|−1] · · ·A[i2i1]Cn1

.

Indeed, since #[ΩN,n−∑
(j:ij /∈S ) nj

]/
(

n
N−1

)
→ 1 as n → ∞, we have

1

#ΩN,n

∑

[(nj)ij∈S ]∈ΩN,n

∣∣∣∣∣
A

[i|i|i|i|]
n|i|

ρn|i|
A[i|i|i|i|−1] · · ·A[i2i1]

A
[11]
n1

ρn1

− C
[i|i|i|i|]
n|i| A[i|i|i|i|−1] · · ·A[i2i1]C [11]

n1

∣∣∣∣∣

≤ 1

#ΩN,n

[
#Ω|i|−N,n,

√
n · |i| · (c|i|γ

√
n) + #(Ω|i|−N,n \ Ω|i|−N,n,

√
n) · (2c)

]
→ 0.
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Our claim is then proved by the dominated convergence theorem.

Finally, from Case 2 one sees that the limit limn→∞
A[i1]

n

( n
N−1)ρn−N+1

is non-zero

if and only if S′
i ̸= ∅. This proof is complete.

Proof of Theorem 3.1. Let Pb = {i : S′
i ̸= ∅} so that Proposition 3.5 immedi-

ately yields that p ∈ Pb if and only if

lim
n→∞

A
[p1]
n(

n
N−1

)
ρn−N+1

> 0.

Now, it remains to show the case where diagonal elements are irreducible.

To show this, we further divide each block A[ij] into sub-blocks A[ij],[i′j′] such

that A
[ii],[i′i′]
pi is either primitive or zero, where pi is the period of A[ii]. We then

have a derived block matrix (which is essentially the same as M) with its block

denoted as A′[ii]. In a similar manner, we define

S ∗ := {i : A′[ii] = A[i′i′],[i′′i′′], ρ(A[i′i′]) = ρ(M)}

and for each 1 ≤ i ≤ k, define

S∗
i := {i = i1 · · · iℓ : i1 = 1, iℓ = i, ij are distinct s.t. A′[ij+1ij ] ̸= 0 ∀j}.

By denoting ij ∼ ij′ if it corresponds to the same block matrix A[ii], we then

define

S′
i
∗
:= {i ∈ S∗

i : #{j : ij ∈ S ∗, ij ≁ ij−1} = N} and S′′
i
∗
:= Si

∗ \ S′
i
∗
.

We then begin a discussion with the following lemma. The greatest common

divisor of a vector p = (p1, ..., pd) ∈ Nd means the greatest common divisor of

p1, ..., pd and is denoted by gcdp. The inner product of two vectors v, w ∈ Zd
+

is denoted by v · w.

Lemma 3.6. Let p ∈ Nd, P = gcdp, and γp,P ;n := #{n ∈ Zd
+ : p · n =

Pn}/
(
Pn
d−1

)
. Then, γp,P := limn→∞ γp,P ;n = lcm{∏i ̸=j pi : 1 ≤ j ≤ d}.

Proof. The case d = 1, 2 is clear. The rest follows by induction.
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Proposition 3.7. Suppose each block on the diagonal of a lower triangular

block matrix M is either irreducible or zero, and P = lcm{gcd{pij : ij ∈ S } :

i ∈ S′
i}. Then, the limit limn→∞

A′[i1]
Pn+z

(Pn+z
N−1 )ρPn+z−N+1

exists for all z ∈ Z+, and is

non-zero if and only if it is positive if and only if S′
i
∗
is nonempty.

Proof. Let ρ be the spectral radius of M and pj be the period of A[jj]. Sup-

pose B
[jj]
z = limn→∞

A
[jj]
pjn+z

ρpjn+z is as found in Lemma 3.4, for which we may find

constants c > 1 and 1 > γ > 0 such that |A[jj′]|, |B[jj′]
z | ≤ c for all j, j′, z ∈ Z+

and that

∣∣∣∣
A

[jj]
pjn+z

ρpjn+z −B
[jj]
z

∣∣∣∣ ≤ cγn. We consider in the following the same cases

as those of Proposition 3.5.

Case 1: i ∈ S′′
i . The summand converges to 0 as n → ∞, and the argument

is exactly the same as that in Proposition 3.5.

Case 2: i ∈ S′
i. Let qj = lcm{pj , P}, and

B
[ijij ]
∗,z =

{
B

[ijij ]
z if ij ∈ S ;∑∞
ℓ=0 ρ

−(qij ℓ+z)A
[ijij ]
qij ℓ+z = ρ−zA

[ijij ]
z (I − ρ−qijA

[ijij ]
qij

)−1 if ij /∈ S .

We show that the summand converges to

∑

(rj)1≤j≤|i|∈Z|i|
+ :

0≤rj<pij if ij∈S ,

0≤rj<qij if ij /∈S ,

P |(|i|−1+
∑

j rj)

γP,(pij )ij /∈S
B

[i|i|i|i|]
∗,r|i| A[i|i|i|i|−1] · · ·A[i2i1]B

[11]
∗,r1 ,

where the notation P |
(
|i| − 1 +

∑
j rj

)
means that P divides |i| − 1+

∑
j rj .

To this end, define for each n ∈ Z+ and 0 ≤ z < pij

C
[ijij ]
pijn+z =

{
B

[ijij ]
z if ij ∈ S ;

ρ−(pijn+z)A
[ijij ]
pijn+z if ij /∈ S ,

so that |C [ijij ]
pijn+z| ≤ c. Due to the same argument as in Proposition 3.5, we know

that the summand and the following sequence are equiconvergent:

∑

[(nj)ij /∈S ]∈Z|i|−N
+

1(
n

N−1

)
∑

[(nj)ij∈S ]∈
Ω

N,

(
n−|i|+N−

∑
(j:ij /∈S ) nj

)
C

[i|i|i|i|]
n|i| A[i|i|i|i|−1] · · ·A[i2i1]C [11]

n1

.

(8)
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Now we consider a subsequence of (8) on Pn, for which by Lemma 3.6 we have

lim
n→∞

∑

[(nj)ij /∈S ]∈Z|i|−N
+

1(
Pn
N−1

)
∑

[(nj)ij∈S ]∈
Ω

N,

(
Pn−|i|+N−

∑
(j:ij /∈S ) nj

)
C

[i|i|i|i|]
n|i| A[i|i|i|i|−1] · · ·A[i2i1]C [11]

n1

=
∑

[(nj)ij /∈S ]∈Z|i|−N
+

P |
(
|i|−1+

∑
(j:ij /∈S ) nj

)
∑

[(nj)ij∈S ]∈ZN
+ :

0≤nj<pij

γP,(pij )ij∈S
C

[i|i|i|i|]
n|i| A[i|i|i|i|−1] · · ·A[i2i1]C [11]

n1

=
∑

[(rj)1≤j≤|i|]∈Z|i|
+ :

0≤rj<pij if ij∈S ,

0≤rj<qij if ij /∈S ,

P |(|i|−1+
∑

j rj)

γP,(pij )ij∈S
B

[i|i|i|i|]
∗,r|i| A[i|i|i|i|−1] · · ·A[i2i1]B

[11]
∗,r1 .

Finally, it is not hard to verify the positivity from the above expression in

Case 2.

Proof of Theorem 3.2. Let Pb;z = {i : S′
i
∗ ̸= ∅}. Applying the Proposition 3.7,

we obtain q ∈ Pb;z if and only if

lim
n→∞

A
[q1]
pn+z(

pn+z
N−1

)
ρpn+z−N+1

> 0.

We can figure out the results of the theorem based on this fact. This proof is

complete.

4 Spread rate for random spread model with a
frozen symbol

In Section 4.1, we start with the case where the offspring mean matrix contains

exactly one primitive component. We present the almost surely convergence

of geometrically normalized the population vector in Theorem 4.1 and find the

direction of the limit of the normalized population vector in Theorem 4.2. These

two results together allow us to investigate the spread rates for the random

spread model in Theorem 4.3. We also state the results for the case where the

offspring mean matrix has two primitive components in Theorem 4.5. Moreover,

all the proofs of the main results and lemmas are provided in Section 4.2.
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4.1 Main results on the spread rate in a random spread
model with a frozen symbol

We first assume that the offspring mean matrix for the associated process

{Z∗
n}n≥0 with a frozen type aK can be represented as

M ≡ [m∗
ji] =




0

M
...
0

mK1 · · · mKK−1 1




where M is the matrix

M =




m11 m12 · · · m1K−1

m21 m22 · · · m2K−1

...
... · · ·

...
mK−11 mK−12 · · · mK−1K−1


 .

and let the covariance matrix V(l) be defined as the following:

V(l) = V ar(Z∗
1|Z∗

0 = el)

where its (i, j)-entry is

E(Z∗
1,iZ

∗
1,j |Z∗

0 = el)− E(Z∗
1,i|Z∗

1 = el)E(Z∗
1,j |Z∗

0 = el)

for all i, j = 1, 2, · · · ,K.

Theorem 4.1. Let ρ = ρ(M) > 1 be the maximal eigenvalue of the offspring

mean matrix M. If the matrix M is primitive and the covariance matrices

V(l)’s are finite for all l = 1, 2, · · · ,K, then there exists a random vector W =

(W1,W2, · · · ,WK) with E(WtW) < ∞ such that

Z∗
n

ρn
→ W as n → ∞

both in mean square and with probability 1.

Let w = (w1, w2, · · · , wK) and v = (v1, v2, · · · , vK)t be the left and right

eigenvector of M associated with the maximal eigenvalue ρ. It can seen from

linear algebra that, if M is primitive, then vi > 0 for all i = 1, 2, · · · ,K, wi > 0

for all i = 1, 2, · · · ,K−1 and wK = 0. So, we can normalize v and w such that

K∑

i=1

vi = 1 and

K∑

i=1

wivi = 1.
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Throughout this paper, when we deal with random spread models, v and w are

assumed to be such normalized eigenvectors.

The next theorem tells us that the limit vector W has the same direction as

the right eigenvector v of the offspring mean matrix M for the spread model:

Theorem 4.2. Let ρ = ρ(M) > 1 be the maximal eigenvalue of the offspring

mean matrix M and let w and v be the normalized left and right eigenvectors

of M associated with ρ. Let the matrix M be primitive, the covariance matrices

V(l)’s be finite for all l = 1, 2, · · · ,K and the random vector W be defined as

in Theorem 4.1. Then there exists a random variable W such that

W = vtW

with probability 1. Moreover, E(W |Z∗
0 = el) = wl for all l = 1, 2, · · · ,K.

As a consequence of Theorem 4.1 and Theorem 4.2, we obtain the spread

rate for the random spread model.

Theorem 4.3. Let ρ = ρ(M) > 1 be the maximal eigenvalue of M and let w

and v be the normalized left and right eigenvectors of M associated with ρ. If

the matrix M is primitive and the covariance matrices V(l)’s are finite, then for

every l = 1, 2, · · · ,K − 1, on the event
{
∥Z∗

n∥
∣∣Z∗

0 = el → ∞
}
, the spread rate

sfal
(aj) = vj > 0 for j = 1, 2, · · · ,K

with probability 1. If l = K, then the spread rate

sfal
(aj) =

{
0, for j = 1, 2, · · · ,K − 1;
1, for j = K

with probability 1.

Remark 4.4. The results in Theorem 4.1, Theorem 4.2 and Theorem 4.3 should

be able to be extended to the cases when the decomposition of the offspring mean

matrix has primitive or irreducible components as stated in the theorems in

Chapter 3 by adopting the similar methods in the proofs in Section 4.2.

In particular, we state the results in Theorem 4.5 for the case where r = 2,

i.e., there are two primitive components in the matrix

M =




A[11] O O
C A[22] O
D E 1


 .
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where the d× d matrix A[11] and the (K − d− 1)× (K − d− 1) matrix A[22] are

primitive. Note that, if ρ(A[22]) > ρ(A[11]) > 1 then vi = 0 for i = 1, 2, · · · , d,
vi > 0 for i = d+ 1, · · · ,K, wi > 0 for i = 1, 2, · · · ,K − 1 and wK = 0. On the

other hand, if ρ(A[11]) > ρ(A[22]) > 1 then vi > 0 for i = 1, 2, · · · ,K, wi > 0 for

i = 1, · · · , d and wi = 0 for i = d+ 1, · · · ,K.

Theorem 4.5. Let ρ = ρ(M) > 1 be the maximal eigenvalue of M and let w

and v be the normalized left and right eigenvectors of M associated with ρ. If

the matrix M has two primitive components and is of the form (2) with r = 2

and the covariance matrices V(l)’s are finite for all l = 1, 2, · · · ,K, then

(i) there exist a random variable W such that

Z∗
n

ρn
→ vtW as n → ∞

both in mean square and with probability 1 and E(W |Z∗
0 = el) = wl for

all l = 1, 2, · · · ,K;

(ii) for any l = 1, 2, · · · ,K − 1 and on the event
{
∥Z∗

n∥
∣∣Z∗

0 = el → ∞
}
, if

ρ(A[22]) > ρ(A[11]) > 1, then the spread rate

sfal
(aj) = vj for j = 1, 2, · · · ,K

with probability 1, and, if ρ(A[11]) > ρ(A[22]) > 1, then the spread rate

sfal
(aj) =





vj , for l = 1, 2, · · · , d and j = 1, 2, · · · ,K;
0, for l = d+ 1, · · · ,K − 1 and j = 1, 2, · · · , d;
v′j−d, for l = d+ 1, · · · ,K − 1 and j = d+ 1, · · · ,K

with probability 1, where v′ = (v′i) is the normalized right eigenvector of

the (K − d)× (K − d) matrix

M ′ =

[
A[22] O
E 1

]
.

associated with the maximal eigenvalue ρ(M ′) such that
∑K−d

i=1 v′i = 1.

For l = K, the spread rate

sfal
(aj) =

{
0, for j = 1, 2, · · · ,K − 1;
1, for j = K

with probability 1
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4.2 Proofs of main theorems for random spread models

In order to give the proofs for Theorem 4.1, Theorem 4.2 and Theorem 4.3 in

Section 4.1, we need the following lemmas. Throughout Section 4.2, we assume

that the hypotheses in Theorem 4.3 hold and let ρ, w and v be defined as in

Theorem 4.2.

Since the offspring mean matrix describes the evolution of the branching

population on average, we first investigate the growth rate of the mean matrix

Mn in the following lemma:

Lemma 4.6. For any j = 1, 2, · · · ,K, we have that

lim
n→∞

etjM
nei

ρn
=

{
wivj , for i ̸= K;
0, for i = K.

Proof. See Page 4 in Ban et al.[4].

Now, for each l = 1, 2, · · · ,K, we define the matrix C
(l)
n in which the (i, j)-

entry is

E(Z∗
n,iZ

∗
n,j |Z∗

0 = el)

for all i, j = 1, 2, · · · ,K. Note that this matrix C
(l)
n is symmetric and the only

nonzero entry in C
(l)
0 is the (l, l)-entry. By Harris [12] (Page 37), C

(l)
n has an

iterated formula:

C
(l)
n+1 = MC(l)

n Mt +

K∑

r=1

V(r)E(Z∗
n,r|Z∗

0 = el),

for n = 0, 1, 2, · · · , and it implies the following:

C
(l)
n = MnC

(l)
0 (Mt)n +

n∑

s=1

Mn−s
( K∑

r=1

V(r)E(Z∗
s−1,r|Z∗

0 = el)
)
(Mt)n−s.

For each l = 1, 2, · · · ,K and each n = 1, 2, · · · , let I(l)n,1 = MnC
(l)
0 (Mt)n and

I
(l)
n,2 =

n∑

s=1

Mn−s
( K∑

r=1

V(r)E(Z∗
s−1,r|Z∗

0 = el)
)
(Mt)n−s

then C
(l)
n = I

(l)
n,1 + I

(l)
n,2.

By the formula of C
(l)
n and the result in Lemma 4.6, we can show that the

elements in C
(l)
n grow like ρ2n in Lemmas 4.7-4.9. This gives the convergence of
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the normalized population vector in mean square and becomes the key to prove

the convergence in Theorem 4.1 and the property in Theorem 4.2.

Lemma 4.7. For each i, j = 1, 2, · · · ,K and l = 1, 2, · · · ,K − 1,

lim
n→∞

etjI
(l)
n,1ei

ρ2n
= w2

l vivj .

Proof. By Lemma 4.6, since l ̸= K, we have

lim
n→∞

etjM
nel

ρn
= wlvj

and hence

lim
n→∞

etl(M
t)nei

ρn
= lim

n→∞

(
etiM

nel
ρn

)t

= wlvi.

So,

lim
n→∞

etjI
(l)
n,1ei

ρ2n

= lim
n→∞

etjM
nC

(l)
0 (Mt)nei

ρ2n

= lim
n→∞

etjM
nel

ρn
· etlC(l)

0 el ·
etl(M

t)nei
ρn

= lim
n→∞

etjM
nel

ρn
· lim
n→∞

etl(M
t)nei

ρn

= wlvj · wlvi
= w2

l vivj .

Lemma 4.8. If l ̸= K, then

lim
n→∞

etjI
(l)
n,2ei

ρ2n
= w2

l vivjA

for some non-negative constant A.

Proof. By Lemma 4.6, for any ϵ > 0, there exists an N = N(i, j, l, ϵ) ∈ N such

that for every n ≥ N , we have that

∣∣∣∣
etjM

nel

ρn
· e

t
l(M

t)nei
ρn

− w2
l vivj

∣∣∣∣ < ϵ.
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For n > 2N ,

etjI
(l)
n,2ei

ρ2n

=
1

ρ2n
etj

[ n∑

s=1

Mn−s
( K∑

r=1

V(r)E(Z∗
s−1,r|Z∗

0 = el)
)
(Mt)n−s

]
ei

=

N∑

s=1

1

ρ2s
etjM

n−sel

ρn−s
· etl

( K∑

r=1

V(r)E(Z∗
s−1,r|Z∗

0 = el)
)
el ·

etl(M
t)n−sei

ρn−s

+

n−N∑

s=N+1

1

ρs+1

etjM
n−sel

ρn−s
· etl

( K∑

r=1

V(r)
E(Z∗

s−1,r|Z∗
0 = el)

ρs−1

)
el ·

etl(M
t)n−sei

ρn−s

+
1

ρn

n∑

s=n−N+1

1

ρn−s+1
etjM

n−sel · etl
( K∑

r=1

V(r)
E(Z∗

s−1,r|Z∗
0 = el)

ρs−1

)
el · etl(Mt)n−sei

≡ J
(l)
n,1 + J

(l)
n,2 + J

(l)
n,3.

First of all, if s ≤ N , then n− s > N and s− 1 < N . Let

A1 ≡
N∑

s=1

1

ρ2s
etl
( K∑

r=1

V(r)E(Z∗
s−1,r|Z∗

0 = el)
)
el

and we have that 0 ≤ A1 < ∞ and

J
(l)
n,1 → w2

l vivjA1, as n → ∞.

Secondly, if N +1 ≤ s ≤ n−N and n > 2N , then n− s ≥ N and s−1 ≥ N .

Hence, let

A2 ≡
∞∑

s=N+1

1

ρs+1
wle

t
l

( K∑

r=1

V(r)vr
)
el

and note that, since ρ > 1, A2 is a non-negative and convergent series. There-

fore, we have that

J
(l)
n,2 → w2

l vivjA2, as n → ∞.

Thirdly, we notice that

E(Z∗
s−1,r|Z∗

0 = el)

ρs−1
=

etrM
s−1el

ρs−1

which converges to wlvr as s → ∞. Moreover, if n−N+1 ≤ s ≤ n and n > 2N ,

then 0 ≤ n− s ≤ N − 1 and s− 1 > N . So, there exists a constant A3 > 0 such

that the sum

n∑

s=n−N+1

1

ρn−s+1
etjM

n−sel · etl
( K∑

r=1

V(r)
E(Z∗

s−1,r|Z∗
0 = el)

ρs−1

)
el · etl(Mt)n−sei
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is non-negative and bounded by A3 and hence J
(l)
n,3 = O(ρ−n) as n → ∞.

Therefore, we have that

etjI
(l)
n,2ei

ρ2n
= J

(l)
n,1 + J

(l)
n,2 + J

(l)
n,3 → w2

l vivjA, as n → ∞,

where A = A1 +A2 ≥ 0.

Lemma 4.7 and Lemma 4.8 together give the following: if l ̸= K, then there

exists a constant A′ = A+ 1 > 0 such that

lim
n→∞

etjC
(l)
n ei

ρ2n
= w2

l vivjA
′

for all i, j = 1, 2, · · · ,K and l = 1, 2, · · · ,K − 1.

On the other hand, the limit when l = K is straight forward from Lemma

4.6:

lim
n→∞

etjC
(K)
n ei

ρ2n
= 0.

Notice that wK = 0 and then the following lemma is concluded.

Lemma 4.9. For all i, j, l = 1, 2, · · · ,K, there exists a constant A′ > 0 such

that

lim
n→∞

etjC
(l)
n ei

ρ2n
= w2

l vivjA
′

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. For n = 0, 1, 2, · · · , let Wn =
Z∗

n

ρn
and we have that

E(Wt
nWn|Z∗

0 = el) =
E((Z∗

n)
tZ∗

n|Z∗
0 = el)

ρ2n
=

C
(l)
n

ρ2n
.

Since
etjC

(l)
n ei

ρ2n
converges as n → ∞ for all i, j, l = 1, 2, · · · ,K, every element in

E(Wt
nWn|Z∗

0 = el) is finite for all n = 0, 1, 2, · · · and all l = 1, 2, · · · ,K.

We will first show that

E
(
(Wn+m −Wn)

t(Wn+m −Wn)
∣∣Z∗

0 = el
)
→ 0, as m,n → ∞.

Note that

E
(
(Wn+m −Wn)

t(Wn+m −Wn)
∣∣Z∗

0 = el
)

= E
(
Wt

n+mWn+m −Wt
n+mWn −Wt

nWn+m +Wt
nWn

∣∣Z∗
0 = el

)

= E
(
Wt

n+mWn+m

∣∣Z∗
0 = el

)
− E

(
Wt

n+mWn

∣∣Z∗
0 = el

)

−E
(
Wt

nWn+m

∣∣Z∗
0 = el

)
+ E

(
Wt

nWn

∣∣Z∗
0 = el

)
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and that, from the Markov property of branching process, E(Z∗
n+m|Z∗

n) =

Z∗
n(M

t)m for n,m = 0, 1, 2, · · · . So, we have that

E
(
Wt

n+mWn

∣∣Z∗
0 = el

)

=
1

ρ2n+m
E
(
(Z∗

n+m)tZ∗
n

∣∣Z∗
0 = el

)

=
1

ρ2n+m
E
(
E((Z∗

n+m)tZ∗
n|Z∗

n)
∣∣Z∗

0 = el
)

=
1

ρ2n+m
E
(
E((Z∗

n+m)t|Z∗
n)Z

∗
n

∣∣Z∗
0 = el

)

=
1

ρ2n+m
E
(
Mm(Z∗

n)
tZ∗

n

∣∣Z∗
0 = el

)

=
Mm

ρ2n+m
E
(
(Z∗

n)
tZ∗

n

∣∣Z∗
0 = el

)

=
MmC

(l)
n

ρ2n+m

and
E
(
Wt

nWn+m

∣∣Z∗
0 = el

)

=
1

ρ2n+m
E
(
(Z∗

n)
tZ∗

n+m

∣∣Z∗
0 = el

)

=
1

ρ2n+m
E
(
E((Z∗

n)
tZ∗

n+m|Z∗
n)
∣∣Z∗

0 = el
)

=
1

ρ2n+m
E
(
(Z∗

n)
tE(Z∗

n+m|Z∗
n)
∣∣Z∗

0 = el
)

=
1

ρ2n+m
E
(
(Z∗

n)
tZ∗

n(M
t)m

∣∣Z∗
0 = el

)

=
1

ρ2n+m
E
(
(Z∗

n)
tZ∗

n

∣∣Z∗
0 = el

)
(Mt)m

=
C

(l)
n (Mt)m

ρ2n+m
.

By the same arguments as in the proofs of Lemma 4.7 and Lemma 4.8, we can

show that, as m,n → ∞,

etjM
mC

(l)
n ei

ρ2n+m

=
etjM

n+mel

ρn+m
· etlC(l)

0 el ·
etl(M

t)nei
ρn

+
1

ρ2n+m
etj

[ n∑

s=1

Mn+m−s
( K∑

r=1

V(r)E(Z∗
s−1,r|Z∗

0 = el)
)
(Mt)n−s

]
ei

→ w2
l vivjA

′

and, similarly,
etjC

(l)
n (Mt)mei

ρ2n+m
→ w2

l vivjA
′ where the constant A′ is as defined

in Lemma 4.9. So, as m,n → ∞,

etjE
(
Wt

n+mWn

∣∣Z∗
0 = el

)
ei → w2

l vivjA
′
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and

etjE
(
Wt

nWn+m

∣∣Z∗
0 = el

)
ei → w2

l vivjA
′

and thus, as m,n → ∞,

etjE
(
(Wn+m −Wn)

t(Wn+m −Wn)
∣∣Z∗

0 = el
)
ei

=
etjC

(l)
n+mei

ρ2(n+m)
−

etjM
mC

(l)
n ei

ρ2n+m
−

etjC
(l)
n (Mt)mei

ρ2n+m
+

etjC
(l)
n ei

ρ2n
→ 0.

Therefore, the sequence {Wn}n≥0 is a Cauchy and hence convergent in mean

square. So, there exists a random vector W with E(WtW) is finite such that

Wn =
Z∗

n

ρn
→ W in mean square, as n → ∞.

Moreover, as n → ∞,

etjE
(
(W −Wn)

t(W −Wn)
∣∣Z∗

0 = el
)
ei

= lim
m→∞

etjE
(
(Wm −Wn)

t(Wm −Wn)
∣∣Z∗

0 = el
)
ei

= O(ρ−2n)

and hence,

E
(
etj
( ∞∑

n=0

(W −Wn)
t(W −Wn)

)
ei

∣∣∣Z∗
0 = el

)

=

∞∑

n=0

E
(
etj
(
(W −Wn)

t(W −Wn)
)
ei

∣∣∣Z∗
0 = el

)
< ∞.

So, given Z∗
0 = el, for all l, e

t
j

( ∞∑

n=0

(W −Wn)
t(W −Wn)

)
ei < ∞ with proba-

bility 1 and, therefore, for all i, j = 1, 2, · · · ,K,

lim
n→∞

etj(W −Wn)
t(W −Wn)ei = 0 with probability 1.

It follows that etj(W −Wn)ei → 0 with probability 1 for all i, j = 1, 2, · · · ,K
and hence gives, as n → ∞,

Wn → W with probability 1.

So, Wn converges to W both in mean square and with probability 1 and the

proof of Theorem 4.1 is complete.

Next, we are going to prove Theorem 4.2 which says that the vectors W and

v share the same direction.
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Proof of Theorem 4.2. Let W = (W1,W2, · · · ,WK), where W1, · · · ,WK are

random variables. Since

E(WtW|Z∗
0 = el) = lim

n→∞
E
( (Z∗

n)
t

ρn
· Z

∗
n

ρn

∣∣∣Z∗
0 = el

)
= lim

n→∞
C

(l)
n

ρ2n
,

by Lemma 4.9, we have that

etjE(WtW|Z∗
0 = el)ei = w2

l vivjA
′

for all i, j = 1, 2, · · · ,K and hence

E
(
(viWj − vjWi)

2
∣∣Z∗

0 = el
)

= v2iE(W 2
j |Z∗

0 = el)− 2vivjE(WiWj |Z∗
0 = el) + v2jE(W 2

i |Z∗
0 = el)

= v2i e
t
jE(WtW|Z∗

0 = el)ej − 2vivje
t
iE(WtW|Z∗

0 = el)ej
+v2je

t
iE(WtW|Z∗

0 = el)ei
= v2iw

2
l vjvjA

′ − 2vivjw
2
l vivjA

′ + v2jw
2
l viviA

′

= 0.

So, viWj = vjWi with probability 1, for all i, j = 1, 2, · · · ,K. Moreover, since

all vi’s are positive, we have that

Wi

vi
=

Wj

vj
with probability 1

for all i, j = 1, 2, · · · ,K. Therefore, there exists a random variable W such that

W = (W1,W2, · · · ,Wk) = (v1W, v2W, · · · , vKW ) = vW

and
Z∗

n

ρn
→ vW

with probability 1. Moreover, since

E(Z∗
n|Z∗

0 = el) = etl(M
t)n,

we have that

E(Wn|Z∗
0 = el) =

1

ρn
E(Z∗

n|Z∗
0 = el) =

etl(M
t)n

ρn

and then

E(Wi|Z∗
0 = el) = lim

n→∞
E(Wnei|Z∗

0 = el) = lim
n→∞

etl(M
t)nei

ρn
= wlvi,
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that is, E(viW |Z∗
0 = el) = wlvi and, therefore,

E(W |Z∗
0 = el) = wl

for all l = 1, 2, · · · ,K and it completes the proof of Theorem 4.2.

Finally, the proof of Theorem 4.3 is straightforward from the results in The-

orem 4.2:

Proof of Theorem 4.3. Given Z∗
0 = el with l = 1, 2, · · · ,K − 1, we have that,

for all j = 1, 2, · · · ,K,

sfal
(aj) = lim

n→∞

Z∗
n,j

K∑
i=1

Z∗
n,i

= lim
n→∞

Z∗
n,j/ρ

n

K∑
i=1

Z∗
n,i/ρ

n

=
Wj

K∑
i=1

Wi

=
vjW

K∑
i=1

viW

=
vj

K∑
i=1

vi

= vj with probability 1.

If l = K, that is, Z∗
0 = eK , then this model starts with an individual of frozen

type aK . So, in this case, Z∗
n = eK with probability 1 for all n = 0, 1, 2, · · · .

Therefore,

sfaK
(aj) = lim

n→∞

Z∗
n,j

K∑
i=1

Z∗
n,i

=
Z∗
n,j

Z∗
n,K

=

{
0, if j = 1, 2, · · · ,K − 1
1, if j = K.

with probability 1 and the proof is complete.

5 Numerical results

The main purpose of the section is to demonstrate the algorithm provided in

Section 3 as well as the numerical simulations for the random spread models.

5.1 The topological case

Let matrix M = [A[ij]]1≤i,j≤5 be defined with

A[11] = A[44] =




0 0 1 1
0 0 1 1
1 0 0 0
0 1 0 0


 , A[22] =




0 0 0 1
0 0 1 0
0 1 0 1
1 0 1 0


 ,
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A[33] =




0 1 0 1
1 0 0 0
0 0 0 1
1 0 1 0


 , A[55] =



0 1 1
1 0 0
1 0 0


 ,

A[31] = A[32] = A[41] = A[43] =




0 1 0 1
0 0 0 0
0 0 0 0
0 0 0 0


 , A[53] =



0 1 0 0
0 0 0 0
0 0 0 0


 ,

and all other A[ij]’s are zero matrices. We note that each A[ii] is a primitive

matrix with period two, and the characteristic matrix χM is

χM =




0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
1 0 1 0 0
0 0 1 0 0



,

with the graph representation provided in Figure 5, where each node is labeled

by its corresponding block matrix A[ii] and eigenvalues ρj (ρ1 = 1+
√
5

2 >
√
2 =

ρ2). For the purpose of illustration, we analyze in the following subsections

the asymptotic behavior of the population when there is a unique ancestor

b ∈ V [11] ∪ V [22].

5.1.1 Size of the population

Note that the only maximal paths initiating from V [11] in the tree structure are

V [11]V [44], V [11]V [33]V [33], V [11]V [33]V [55],

and the maximal number of appearances of maximal eigenvalues in each path

is 1. Since A[ii]’s have period 2, according to Lemma 3.4 and Theorem 3.2, we

know the size of the population is O(ρn1 ) asymptotically, where O denotes the

big O notation. Similarly, if one applies the same argument to the case b ∈ V [22],

the maximal number of appearances of maximal eigenvalues in each path is 2,

and the size of the population is O(nρn−1
1 ). The simulation is provided as in

Figure 6, where the dashed line denotes the asymptotic value of the population.

5.1.2 Spread rate

Firstly, we consider the case when b ∈ V [11]. Based on Theorem 3.2, since the

period of A[ii] is 2, for each 1 ≤ i ≤ 2 there is a set Pi such that Sb(a) > 0
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Figure 5: tree structure of block matrix M

0 10 20 30 40 50
100

102

104

106

108

1010

1012

1014

Generation n

P
op

u
la
ti
on

1
t 1
5
M

n
e 1

5

Population 1t15M
ne1

1t15M
ne15

w1 · ρ2⌊
n
2 ⌋

(a) b ∈ V [11]

0 10 20 30 40 50
100

102

104

106

108

1010

1012

1014

Generation n

Po
pu

la
tio

n
1t 1

1
M

n
e 1

1

Population 1t11M
ne1

1t11M
ne11

w1 ·
(⌊n

2 ⌋
2

)
ρ2(⌊

n
2 ⌋−1)

(b) b ∈ V [22]

Figure 6: size of the population

for all a ∈ Pi(a). In fact, it can be verified by looking at the eigenvectors

of P1 ∪ P2 = V [33] ∪ V [44] ∪ V [55]. Similarly, when b ∈ V [22], we also have

P1 ∪P2 = V [33] ∪V [44] ∪V [55]. The simulation is provided as in Figure 7, where

the periodic fluctuation is clearly observable in the figure.

5.2 Random models

To demonstrated Theorems 4.1- 4.5, we provide three numerical examples.
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Figure 7: spread rate

5.2.1 The case with only one primitive component

we consider the following random spread model with probability distribution

vectors {p(i)(·)}3i=1:




p(1)(3, 1, 1) = 1
2 , p

(1)(1, 3, 1) = 1
2 ,

p(2)(1, 2, 2) = 1
2 , p

(2)(3, 2, 0) = 1
2 ,

p(3)(1, 0, 0) = 1,

for which the associated offspring mean matrix can be computed as

M =



2 2 0
2 2 0
1 1 1


 . (9)

The normalized right and left eigenvectors of M associated with the maximal

eigenvalue ρ = 4 are v = (3/8, 3/8, 1/4) and w = (4/3, 4/3, 0), respectively,. It

then can be inferred from Theorem 4.2 that E(Z∗
n/ρ

n|Z∗
0 = e1) → w1v. This

can be observed in Figure 8, in which E(Z∗
n/ρ

n|Z∗
0 = e1) → w1v is numerically

attained by the empirical average over 50 realizations. The results shown in the

figure are consistent with Theorem 4.3 in the sense that the asymptotic value

of E(Z∗
n/ρ

n|{Z∗
0 = e1}) is a positive vector. On the other hand, since v and

w1 are positive, Theorem 4.1 and Theorem 4.2 implies the population size, on

average, should be w1ρ
n at generation n.

5.2.2 The case with two primitive components

Similar discussions extend to more complex random models and the following

two numerical examples also show the consistency with the results in Theorem
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4.5. Consider the spread model {p(i)(·)}5i=1.





p(1)(2, 1, 0, 3, 0) = 1
2 , p

(1)(0, 1, 2, 3, 2) = 1
2

p(2)(3, 3, 2, 1, 1) = 1
3 , p

(2)(0, 0, 2, 1, 1) = 2
3

p(3)(0, 0, 3, 2, 0) = 1
2 , p

(3)(0, 0, 1, 2, 2) = 1
2

p(4)(0, 0, 4, 1, 4) = 1
3 , p

(4)(0, 0, 2, 1, 3) = 1
3 , p

(4)(0, 0, 0, 4, 2) = 1
3

p(5)(0, 0, 0, 0, 1) = 1

for which the associated offspring mean matrix can be computed as

M =




1 1 0 0 0
1 1 0 0 0
1 2 2 2 0
3 1 2 2 0
1 1 1 3 1




(10)

Similar results as above are illustrated in Figure 9. It is noteworthy that under

this setting, the ratios Z∗
1/ρ

n and Z∗
1/ρ

n tend to zero, since the submatrix in-

dexed by the symbols (namely, A[11] =

[
m11 m12

m21 m22

]
) corresponds to a primitive

component with its maximal eigenvalue strictly smaller than that of M. This

should be compared with the following random spread model.

Consider the spread model {p(i)(·)}5i=1.





p(1)(4, 1, 1, 1, 0) = 1
4 , p

(1)(0, 1, 3, 3, 2) = 1
4 , p

(1)(2, 3, 0, 4, 1) = 1
2

p(2)(1, 3, 2, 0, 1) = 2
3 , p

(2)(4, 0, 2, 3, 1) = 1
3

p(3)(0, 0, 2, 0, 1) = 1
2 , p

(3)(0, 0, 0, 1, 2) = 1
2 , p

(3)(0, 0, 1, 2, 0) = 1
2

p(4)(0, 0, 0, 1, 4) = 2
3 , p

(4)(0, 0, 3, 1, 1) = 1
3

p(5)(0, 0, 0, 0, 1) = 1

for which the associated offspring mean matrix is can be computed as

M =




2 2 0 0 0
2 2 0 0 0
1 2 1 1 0
3 1 1 1 0
1 1 1 3 1




(11)

It is to be noted that the only difference in the offspring mean matrices (10)

and (11) lies in the submatrices A[11] =

[
m11 m12

m21 m22

]
and A[22] =

[
m33 m34

m43 m44

]
.

This difference then leads to the positiveness of the asymptotic value Z∗
n/ρ

n in

Figure 10, as opposed to Figure 9.
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Figure 8: Example of a random model with three types. The mean ratio and
the mean population are numerically approximated by empirical averages over
50 realizations.
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Figure 9: Example of a random model with five types. The mean ratio and the
mean population are numerically approximated by empirical averages over 50
realizations.
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Figure 10: Example of a random model with five types. The mean ratio and
the mean population are numerically approximated by empirical averages over
50 realizations.
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6 Conclusion

Pandemic occurrences cause a lot of medical, economic and social problems. In

order to reduce their impact, many prevention and control measures are applied

to slow the spread of disease. For example, quarantine is a measure to keep

people who have been in close contact with the infected apart from others, to

avoid onward transmission, while isolation refers to the separation of confirmed

or suspected cases from others for the duration of the infectious period. When

such kind of measures are adopted, the chances of people with higher contagious

ability spreading the virus may be limited. Therefore, the viral spread pattern

will be changed, leading to different results in terms of the spread rate.

To model this phenomenon, we propose two mathematical models from the

topological and random perspectives by means of substitution dynamical sys-

tems and the theory of branching processes. In both models, a so-called frozen

symbol (type) is used to represent the group of individuals who have been iso-

lated. We assume that this frozen symbol can only produce exactly one symbol

of the same kind (or one offspring of the same type), namely, once a symbol is

frozen, it has no ability to spread. In this work, we investigate the spread rate

in both topological and random spread models with frozen symbols. In Chapter

3, we prove, for the topological spread model, the limiting spread rate exists

and construct an algorithm to determine when the spread rate is positive for

the case when the ξ-matrix can be decomposed into primitive components (The-

orem 3.1, Proposition 3.5) and the case when the components are irreducible

(Theorem 3.2, Proposition 3.7). In Chapter 4, we extend the classic results

for branching processes with primitive offspring mean matrices to the random

model with a frozen symbol. We prove the geometric growth of the population

size (Theorem 4.1), show that the limit of type composition is proportional to

the right eigenvector associated with the maximal eigenvalue of the offspring

mean matrix (Theorem 4.2) and we find the spread rates (Theorem 4.3). In

Chapter 5, some topological and random examples are provided. The numerical

results support the theoretical results in Chapter 3 and Chapter 4.

The significance of our work is as follows: First of all, two spread models

proposed here are discrete, so all the spread patterns of different types can be
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clearly represented by a deterministic matrix and hence the transmission or the

spread at any time n is computable. In particular, this characteristic allows

us to divide the types into group according to the accessibility to each other.

Hence, the trace of the possible evolution from type to type can be determined

and it leads to the proposed algorithm in this work for identifying the types

with positive spread rates. Secondly, due to the structure of the models, the

transition after time n can be represented as a power Mn of the initial ξ-matrix

or offspring mean matrix, so the long-term behavior of the type composition

is predictable using the information from M. Namely, the right eigenvector

associated with the spectral eigenvalue will give us the limiting spread rate of

theses models. This is an advantage which provides us an easier way to find

the spread rate without involving in any complicated computation or iterations.

Thirdly, these models based on the substitution and branching processes can be

alternated and generalized easily to fit different spread mechanisms. For exam-

ple, the m-spread models [4] describes the dependence of the spread patterns

and the spread models with frozen symbols in this work and [5] deals with the

situations when some types are blocked. Finally, it is worth mentioning that,

in this work, we derive a method to deal with the non-primitive ξ-matrix and

offspring mean matrix. In the classic theories (both in substitution and branch-

ing processes), the primitive property is the key sufficient condition to study

the limit behavior of the matrix using its maximal eigenvalue and the corre-

sponding eigenvectors. However, our model setting with frozen symbols leads

to the non-primitive cases. Therefore, the difficulty arises during the compu-

tation. In dealing with it, different cases are considered such as the matrices

whose components are primitive or irreducible with some periods. In each case,

we investigate the properties of its components to study the limit behavior of

the whole matrix as well as deriving the algorithms to locate the positive spread

rates. Further, these topological results provides the ideas to study the random

spread models.
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