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Abstract. This paper focuses on the analysis of two particular models, from

deterministic and random perspective respectively, for spreading processes.
With a proper encoding of propagation patterns, the spread rate of each pat-

tern is discussed for both models by virtue of the substitution dynamical sys-

tems and branching process. In view of this, we are empowered to draw a com-
parison between two spreading processes according to their spreading models,

based on which explanations are proposed on a higher frequency of a pattern in

one model than the other. These results are then supported by the numerical
evidence later in the article.

Contents

1. Introduction 1
1.1. Topological m-spread models 3
1.2. Random m-spread models 4
2. Topological m-spread model 5
2.1. Notations and setup 5
2.2. Main results 8
3. Random m-spread models 15
3.1. Notations and setup 15
3.2. Main results 22
4. Connection between topological models and random models 28
5. Numerical results 31
5.1. Topological models 31
5.2. Random models 32
5.3. Relations between topological and random models 34
6. Conclusion 34
Acknowledgment 36
Data availability 36
References 36

1. Introduction

Occasionally, a pandemic spreads rapidly and widely around the world. To
minimize the impact caused by these diseases, developing a mathematical model

Key words and phrases. topological spread model, random spread model, transition model,
spread rate, n-spread rate.
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based on real data as a criterion for delivering required verdicts is an essential
starting point. There are many works discussing propagation models and their
dynamics (cf. Billings et al (2002); Halle et al (1993); Zheng and Bonasera (2020);
Merkin et al (2005); Jin and Zhao (2009); Al-Jararha and Ou (2013); Ou and Wu
(2006); Gourley and Lou (2014); Alexander et al (2004); Wang and Zhao (2012);
Ruan and Wu (2009)) and it is worth noting that most modeling is done by using
the (partial) differential equations. Ban et al (2021) attempted to take a different
approach to the development of spread models in which the individuals are classified
into various categories (individuals in the same category are said to be of the same
type) and the spread pattern of each type is fully described in both deterministic and
random senses and only depends on its own type. Namely, two distinct perspectives
were provided: the topological spread models with the help of the substitution
dynamical system (cf. Queffélec (2010)) which is a branch of dynamical systems
and the random spread models by the means of the branching process which is a
branch of the probability (cf. Athreya and Ney (2004)). Ban et al. examined the
long term behavior of the models and showed that the spread rates are predictable
and related to the maximal eigenvalue and its corresponding eigenvector of the ξ-
matrix and the offspring mean matrix in topological and random spread models,
respectively. However, the setting of these spread models can not illustrate the
situations with more complicated spreading phenomena. For example, in the most
epidemics, individuals may have multiple contacts with many sources of infection
and, in general, a contagious period usually lasts for a while until the fully recovery.
Therefore, it is more realistic to consider that the spread patterns are affected by
the types of the surrounding individuals during their contagious periods. In this
paper, we aim to develop such spread models which can exhibit this spreading
characteristic. More precisely, we propose both the topological and random models
in which the spread patterns are affected by the type composition of the individuals
within m “generations” (or m units of time), where m can be thought as the length
of the contagious period, so they will be called the m-spread model throughout this
paper and therefore the spread models introduced in Ban et al (2021) become the
special cases with m = 1 and will be called the 1-spread models.

The major goals of our work in this paper are stated below:

1. For both models, we discuss the long-term behavior of a particular indi-
vidual, namely, the ‘spread rate’. Additionally, we would like to find the
rigorous formula for the spread rate of an individual if possible.

2. For both models, we aim to identify the factors that cause a high spread
rate, and show that removing the said factor would reduce the spread rate.

Fortunately, the aforementioned problems can be completely solved for both
models. The work done for the 1-spread models in Ban et al (2021) provides
a foundation for us to investigate the m-spread model. We will transform the
topological and random m-spread models into their corresponding topological and
random 1-spread models and find the spread rate of each type in the m-spread
models by investigating the spread rates for the induced 1-spread models. Moreover,
the relation between the topological and random m-spread models is also addressed.
Although this research work was originally conceived to construct a model for the
spread of some virus or disease in epidemiology, the m-spread model can also be
applied in many different areas such as population genetics, ecology, etc. The
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Figure 2. Illustra-
tion of an infinite
spread model gener-
ated from a topolog-
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following two subsections provide a general description of both models and their
main results.

1.1. Topological m-spread models. In this section, we provide a general de-
scription of the topological spread model, while detailed definitions and outcomes
can be found in Section 2.

Let A = {a, b} be an alphabet1, F be a finite, directed graph with root ε, and
p : F → A be an m-pattern (see Section 2) as Figure 1. Here and subsequently, p
describes a certain manner of propagation described as follows. First, there is a type
a individual at time-0, and it produces two a’s at time-1. For the a on the left, it
will produce one a individual and one b individual at time-2, while the a on the right
will produce only one b at time-2. The same reasoning applies to time-n to time-
(n+1) for 0 ≤ n ≤ m−1. Therefore, p demonstrates a certain mode of propagation
of ancestor a from time-0 to time-m. Since m ∈ N is fixed and S = {pi}li=1 is a
collection of such m-patterns, i.e., a collection of spread modes, a topological spread
model is a model such that each p ∈ S can be extended to an infinite spread mode
with respect to S, say τp, that is defined in an infinite (non-uniform) tree T = Tp
so that the restriction of τp to the first m-layers is p (see Figure 2). In addition, for
each g ∈ Tp associated with a type a′ individual, the descendants of this individual
from time-(|g|+ i) to time-(|g|+ i+ 1) for 0 ≤ i ≤ m− 1 is a spread mode of some
p′ ∈ S, where |g| stands for the length of g, i.e., the number of edges from ε to g.

For p ∈ S with type a individual at the root, the number m ∈ N indicates
the ‘length’ of the spread mode from a, and the infinite spread mode τp specifies
how p propagates according to S when time tends to infinity. Given S, p ∈ S
and a ∈ A, the occurrence of a at τp from sth layer to tth layers for s ≤ t, is
extremely complicated and random. For example, if a is a severe illness spreading
in a pandemic, investigating the spread rate of a is one of the most important
objectives of the spread model. Once the spread rate of some a ∈ A is calculated,
we look for the primary spread modes (or factors) in S that cause the (high) spread
rate of a and eliminate them to reduce the spread rate of a. Those are the two
primary aims of this study, as previously mentioned. In Theorem 4, we propose

1We will call A the type set in Section 2
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a methodology for calculating the spread rate of a symbol a ∈ A. Furthermore,
Theorem 5 provides a method to compute the spread rate of a pattern. Finally,
Theorem 8 gives a comparison of the spread rates of two models, and such a result
helps us to examine and identify the major underlying factor in the spread model
that causes the (high) spread rate.

1.2. Random m-spread models. There is always uncertainty during propaga-
tion, and therefore it is reasonable to consider the case in which a mode may
have a chance to produce different type compositions of offspring in a further level
(i.e., generation). Therefore, we will introduce in Chapter 3 a random m-spread
model in which the probability distribution of the type composition of the offspring
depends on the types of the ancestors in the past m generations in the family his-
tory. Figures 4, 5 and 6 give illustrations showing how a random 2-spread model
with type set {a, b} spreads. In Figure 4, we can see that one type a individual
produces two type a individuals and this spread pattern represents a mode, called
α1
i1

, in the random 2-spread model. After one generation when this population has

produced its third generation, i.e., this 2-level tree α1
i1

grows into a 3-level tree at

time 1, it has a non-negative probability to grow into the tree α2
j1

on the left or the

tree α2
j3

on the right or other possibilities, but it will never, i.e., with probability 0,

grow into the tree α2
j2

in the middle because α2
j2

this tree does not share the same

mode as the past two generations with α1
i1

. Also, Figure 6 shows how a 3-level tree
grows into a 4-level tree in the random 2-spread model. In Chapter 3, we will give
a formal construction of the m-dependent process and the random m-spread model
and its related m-dependent process which describes how the tree (or population)
grows and how the types are passed onto the next level (i.e., generation). We then
introduce a corresponding branching process which is called the induced branching
process to study the spread rate in the random m-spread model. Theorem 15 and
Theorem 17 give results for the spread rates of a type and a pattern in the random
m-spread model. Moreover, a comparison of two random m-spread models is given
in Theorem 18 in an average sense.

Due to increasing interest in tree-indexed processes, many research works in
physics, probability, dynamical systems and information theory have been done on
studying the limit behaviors of the random fields on trees. For example, Berger and
Ye Berger and Ye (1990) investigated the entropy rate for random fields on binary
trees. Ye and Berger Ye and Berger (1996) proved the asymptotic equipartition
property with convergence in probability for a PPG-invariant and ergodic random
field on a homogeneous tree. Yang and Liu Yang and Liu (2002) studied a strong
law of large numbers for the frequency of the occurrence of a state in the entire
tree for a Markov chain field on a homogeneous tree. Yang and Ye Yang and
Ye (2007) also proved the asymptotic equipartition property for nonhomogeneous
Markov chains indexed by a homogeneous tree. In this paper, we take a different
approach and obtain an extension on the frequency of the occurrence of a state
within any given successive levels of the tree with the influence from not only the
“parent” but also from the “ancestors in the most recent m levels”.

Finally, Chapter 4 is devoted to the discussion of the relationship between the
topological m-spread model and the random m-spread model, and in Chapter 5,
we provide some examples and numerical evidence to support our main results in
both models.
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Figure 3. Parent and children in an m-pattern

2. Topological m-spread model

2.1. Notations and setup. Let A = {ai}ki=1 be a type set. For d ∈ N, we denote
by Td the conventional d-tree, and define ∆n = {g ∈ Td : 0 ≤ |g| ≤ n}, where |g|
stands for the length of g, i.e., the number of the edges from the root ε to g. For
m < n and m,n ∈ N, define

∆n
m = ∆n\∆m = {g ∈ Td : m < |g| ≤ n},

and for a finite set F ⊆ Td define Fnm = F ∩ ∆n
m. For finite set F ⊆ ∆m, t ∈ F

with |t| = r, and n ∈ N with r + n ≤ m, we define F
(t)
n = {tg ∈ F : |tg| ≤ n}

and F
(ε)
m = F clearly. Let F ⊆ ∆m and assume at least one g ∈ F such that

|g| = m. A function p : F → A is called an m-order pattern (or m-pattern for
brevity), and F = Fp is called the support of p, and we use the notation Pm to
denote the set of the collection of m-patterns. For any pattern p, we also define
∆m(p) = Fp ∩ ∆m and ∆n

m(p) = Fp ∩ ∆n
m. Supposing p : Fp → A is a pattern

on Fp, we denote by pg := p(g) ∈ A for g ∈ Fp, the symbol at the coordinate g.

Letting p be an m-pattern and Fp be its support, we decompose Fp = ∪mi=0Σ
(i)
p ,

where Σ
(0)
p = ε and Σ

(i)
p = {g ∈ Fp : |g| = i} ⊆ Fp for 1 ≤ i ≤ m, and define

σp := {σ(i)
p }mi=0, where σ

(i)
p =

∣∣∣Σ(i)
p

∣∣∣, where |A| stands for the cardinality of the set

A. That is, Σ
(i)
p is the ith layer vertices in Fp and σ

(i)
p is its cardinality. Finally,

we define dp := min0≤i≤m σ
(i)
p and dp := max0≤i≤m σ

(i)
p .

2.1.1. m-spread models and spread rate. For p ∈ Pm, we call p(0) the parent of p if
p(0) ∈ Pm−1 and p(0) = p|

(Fp)
(ε)
m−1

, where p|E is the projection of p on the finite set

E, that is, p|E = {pg : g ∈ E}. In addition, for 1 ≤ j ≤ σ
(1)
p , we define the j-th

child with respect to p by p
(1)
j = p|

(Fp)
(gj)

m−1

for gj ∈ Σ
(1)
p . Hence, each p ∈ Pm can

be written in the following form (cf. Figure 3)

(1) p = (p(0); p
(1)
1 , . . . , p

(1)

σ
(1)
p

).

Let S = {pi}li=1 be a collection of m-patterns and suppose d := max1≤i≤l dpi , S
is called an m-order spread model (or m-spread model for brevity) if for any p ∈ S
and ∀1 ≤ j ≤ σ(1)

p , there exists exactly one q ∈ S such that p
(1)
j = q(0).
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Let S be an m-spread model and 1 ≤ j ≤ σ
(1)
p . Since p

(1)
j is parent of some

q(p
(1)
j ) ∈ Pm, we replace p

(1)
j by q(p

(1)
j ) along each 1 ≤ j ≤ σ

(1)
p . This generates a

(m+1)-pattern, say τm+1
p . We continue the same process. Once the τm+n

p ∈ Pm+n

is constructed and Fτm+n
p

is the support of τm+n
p . We replace each p

(1)
j ∈ Pm−1

by q(p
(1)
j ) ∈ Pm for all 1 ≤ j ≤ σ

(n+1)

τm+n
p

to generate τm+n+1
p ∈ Pm+n+1. Clearly,

τm+n
p |∆m(τp) = p for n ≥ 1. Finally, we define

τp := lim
n→∞

τm+n
p ∈ ATd

and call it the infinite spread pattern induced from p with respect to S (or induced
spread pattern from p), and we denote by Fτp the support of τp.

Suppose S is a m-spread model. For p ∈ S, let τp be the induced spread pattern
from p with respect to S. Denote by τp|∆s

r
the projection of τp on ∆s

r, for r, s ∈ N.
Let {kn}∞n=1 ⊆ N be a sequence of natural numbers with kn → ∞ as n → ∞ and
define

(2) sn :=

n∑

i=1

ki.

Let n ∈ N and η ∈ Pn be any sub-pattern of τp for some p ∈ S, i.e., η = τp|F ,
where F is a finite set of Fτp . We denote by Oa(η) the number of occurrences of
a ∈ A in η. The aim of this study is to compute the following spread rate of a in
τp within the range ∆

sn+1
sn (τp).

(3) sp(a; {kn}∞n=1) = lim
n→∞

sp(a; [sn, sn+1]) = lim
n→∞

Oa(τp|∆sn+1
sn (τp)

)
∣∣∆sn+1

sn (τp)
∣∣ , a ∈ A,

whenever the limit (3) exists. In addition, for kn = k, ∀n ≥ 1 we are interested in

the following spread rate within the fixed range ∆
k(n+1)
kn (τp) as well.

(4) sp(a; k) = lim
n→∞

sp(a; [kn, k(n+ 1)]) = lim
n→∞

Oa(τp|∆k(n+1)
kn (τp)

)
∣∣∣∆k(n+1)

kn (τp)
∣∣∣

, a ∈ A.

2.1.2. Induced systems. To compute the rates (3) and (4), a method which trans-
forms a m-spread model to a 1-spread model (induced system) is proposed. Sup-
posing S is a m-spread model over A, we define the induced type set as

A = A(S) = {a ∈ Pm−1 : a is a parent or a child of p ∈ S ∩ Pm},
on which an order is given, say A = {ai}ki=1. Therefore, the m-spread model
can be transformed to the 1-spread model S = S(S) over A, as follows. For p =

(p(0); p
(1)
1 , . . . , p

(1)

σ
(1)
p

) (cf. (1)) and α ∈ A, which represents p(0), we write

p(1)
α = p(1)

α (p) = (α;α
(1)
1 · · ·α

(1)

σ
(1)
α

) := (p(0); p
(1)
1 · · · p

(1)

σ
(1)

p(0)

),

where α
(1)
j ∈ A represents p

(0)
j for 1 ≤ j ≤ σ(1)

p(0)
, and define

Π(p(1)
α ) = (α

(1)
1 , . . . , α

(1)

σ
(1)
α

).
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Next, we replace each α
(1)
j by Π(p

(1)

α
(1)
j

) for all j = 1, 2, . . . , σ1
α to obtain the pattern

of the 2nd generation, i.e.,

p(2)
α = (α; Π(p

(1)

α
(1)
1

)Π(p
(1)

α
(1)
2

) · · ·Π(p
(1)

α
(1)

σ
(1)
α

))

= (α;α
(2)
1 · · ·α

(2)

σ
(2)
α

),

where σ
(2)
α is the total number of the offspring in the 2nd generation. In this

manner, once p
(n−1)
α = (α;α

(n−1)
1 , . . . , α

(n−1)

σ
(n−1)
α

) is defined, we denote the offspring

type chart of α in the (n− 1)th generation by

Π(p(n−1)
α ) = α

(n−1)
1 , . . . , α

(n−1)

σ
(n−1)
α

.

Then we replace offspring of type α
(n−1)
j in p

(n−1)
α by Π(p

(1)

α
(n−1)
j

), j = 1, 2, . . . , σ
(n−1)
α ,

to obtain p
(n)
α , the pattern of the nth generation and so on.

We call S = S(S) = {p(1)(p)}p∈S = {p(1)
α }α∈A the 1-spread model induced

from S (or induced model) over A. Let S be the induced model from S. For

α, β ∈ A, denote by
∣∣∣Π(p

(n)
α )
∣∣∣
β

the number of the occurrences of β in Π(p
(n)
α ). Let

ξ : A→ A∗ be the associated substitution of S, that is, ξ(α) = Π(pα) for all α ∈ A

with length |ξ(α)| = σ
(1)
α . This substitution induces a morphism of the monoid A∗

by assigning ξ(B) = ξ(b0)ξ(b1) · · · ξ(bn) if B = b0b1 · · ·bn ∈ A∗ and ξ(B) = ∅
if B = ∅. Denote the n-time iteration map of ξ as ξn = ξ ◦ ξn−1. Proposition 3.1

Ban et al (2021) shows that the sets {Π(p
(n)
α )}α∈A and {ξn(α)}α∈A admit one-

to-one correspondence. For the rest of our discussion of the induced model, two
additional assumptions on the complexity of the spreading are made as in Ban et al
(2021). That is, 1. limn→∞ |ξ(α)| = ∞ for every α ∈ A, and 2. there exists an
α0 ∈ A such that ξ(α0) begins with α0. Given a substitution ξ and A = {ai}ki=1,
we derive the associated ξ-matrix M = Mξ, which is a k × k matrix defined by
M = [mij ] := [Oai(ξ(aj))]. In addition, the matrix M is assumed to be irreducible;

that is, for every 1 ≤ i, j ≤ k there exists n = n(i, j) such that m
(n)
ij > 0. It then

follows from 1. and 2. that M is actually a primitive matrix (see Ban et al (2021)
and (Queffélec, 2010, Proposition 5.5) for the equivalence), i.e., n can be chosen
independent of i, j. Let ρ be the maximal eigenvalue of M and v = vρ be the
corresponding eigenvector. (Ban et al, 2021, Theorem 3.3) demonstrates that

sα(β) = lim
n→∞

s(n)
α (β) := lim

n→∞

∣∣∣Π(p
(n)
α )
∣∣∣
β

σ
(n)
α

= v(β).

Lemma 1 (Theorem 3.3. Ban et al (2021)). Let S be the induced model from S,
and A be the induced type set. Let ξ, M be the corresponding substitution map and
ξ-matrix respectively. Suppose ρ is the spectral radius of M and v the corresponding
eigenvector. The following statements hold.

(i) Let α ∈ A. Then the vector (sα(β))β∈A is independent of α and (rα(β))β∈A =
v, i.e.,

sα(β) = lim
n→∞

∣∣∣Π(p
(n)
α )
∣∣∣
β

σ
(n)
α

= v(β).
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In addition, the speed of the convergence is geometric.

(ii) c1(v)ρm ≤∑α∈A s
(m)
α (β) ≤ c2(v)ρm for all m ∈ N and β ∈ A, where

c1(v) =

(
min1≤j≤k v(j)

max1≤j≤k v(j)

)
and c2 =

(
max1≤j≤k v(j)

min1≤j≤k v(j)

)
.

Suppose S = {pi}li=1 is induced from S = {pi}li=1 over induced type set A. For
a ∈ A define

θ(a) := {α ∈ A : α represents p(0) ∈ Pm−1 in which p(0)(ε) = a}.
2.2. Main results.

2.2.1. Spread rate of a symbol. Before presenting the main result, we provide a
useful result for the study of the spread rate.

Lemma 2. Let {an}∞n=1, {bn}∞n=1 be real sequences and {cn}∞n=1, {dn}∞n=1 be posi-
tive real sequences. Suppose

lim
n→∞

an
bn

= lim
n→∞

cn
dn

= Q.

Then,

lim
n→∞

an + cn
bn + dn

= Q.

Furthermore, suppose that limn→∞
∑n
j=1 bj = +∞. Then,

lim
n→∞

∑n
j=1 aj∑n
j=1 bj

= Q.

Proof. The equality limn→∞
an+cn
bn+dn

= Q is immediate and we omit the proof. For
the second part, we claim that for all M > Q and m < Q we have

lim sup
n→∞

a1 + · · ·+ an
bn + · · ·+ bn

≤ M, and

lim inf
n→∞

a1 + · · ·+ an
bn + · · ·+ bn

≥ m.

Indeed, since there exists N1 ∈ N such that an
bn

< M for all n ≥ N1, we have, for
all n ≥ N1, an < Mbn and

a1 + · · ·+ an
b1 + · · ·+ bn

=
a1 + · · ·+ aN1

b1 + · · ·+ bn
+
aN1+1 + · · ·+ an
b1 + · · ·+ bn

<
a1 + · · ·+ aN1

b1 + · · ·+ bn
+M

bN1+1 + · · ·+ bn
b1 + · · ·+ bn

<
a1 + · · ·+ aN1

b1 + · · ·+ bn
+M .

We note that N1 is fixed and limn→∞
∑n
j=1 bj = +∞. Therefore,

lim sup
n→∞

a1 + · · ·+ an
b1 + · · ·+ bn

≤ lim sup
n→∞

(
a1 + · · ·+ aN1

b1 + · · ·+ bn
+M

)
= M .

For the other inequality, since there exists N2 ∈ N such that an
bn
> m for all n ≤ N2,

we derive by using the same argument as above that

lim inf
n→∞

a1 + · · ·+ an
b1 + · · ·+ bn

> lim inf
n→∞

(
a1 + · · ·+ aN2

b1 + · · ·+ bn
+m

bN2+1 + · · ·+ bn
b1 + · · ·+ bn

)

= m.
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The proof is thus completed. �

Lemma 3. Let S be the induced model from S, and ρ and v be defined as in Lemma
1. Suppose {kn}∞n=1 ⊆ N is a sequence of natural numbers with kn →∞ as n→∞
and sn is defined in (2). Then for all α, β ∈ A, we have

(5) sα(β; {kn}∞n=1) = lim
n→∞

Oβ(τα|∆sn+1
sn (τα)

)
∣∣∆sn+1

sn+1(τα)
∣∣ = v(β).

In particular, if kn = k ∀n ∈ N, we have

(6) sα(β; k) = lim
n→∞

Oβ(τα|∆k(n+1)
kn (τα)

)
∣∣∣∆k(n+1)

kn (τα)
∣∣∣

= v(β).

Proof. 1. It can be seen that (6) is not a direct consequence of (5) since kn = k 9
∞, and we provide the proof of (6) first. Note that

(7)
∣∣∣∆k(n+1)

kn (τα)
∣∣∣ = σ(kn+1)

α + · · ·+ σ(k(n+1))
α .

Lemma 1 is applied to show that

(8) lim
n→∞

∣∣∣Π(p
(kn+j)
α )

∣∣∣
β

σ
(kn+j)
α

= v(β) for 1 ≤ j ≤ k.

Combining (8), (7) with the first result of Lemma 2, we have

sα(β; k) = lim
n→∞

sα(β; {kn}∞n=1)

= lim
n→∞

Oβ(τα|∆k(n+1)
kn (τα)

)
∣∣∣∆k(n+1)

kn (τα)
∣∣∣

= lim
n→∞

∣∣∣Π(p
(kn+1)
α )

∣∣∣
β

+ · · ·+
∣∣∣Π(p

(k(n+1))
α )

∣∣∣
β

σ
(kn+1)
α + · · ·+ σ

(k(n+1))
α

= v(β).

This completes the proof of (6).
2. By an argument similar to the preceding, the second result of Lemma 2 yields

(5). �

Theorem 4 below provides a formula for the spread rate of an a ∈ A, and it
reveals that the first goal stated in the introduction is fully achieved.

Theorem 4. Let S = {pj}lj=1 be a m-spread model over A, and S = {pi}
l
i=1 be

the associated induced 1-order spread model over the induced type set A. Then, the
following statements hold.

(i) Suppose k ∈ N, for a ∈ A and p ∈ S we have

(9) sp(a; k) = lim
n→∞

Oa(τp|∆k(n+1)
kn (τp)

)
∣∣∣∆k(n+1)

kn (τp)
∣∣∣

=
∑

β∈θ(a)

v(β).
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(ii) Let {kn}∞n=1 ⊆ N be an increasing sequence with kn → ∞ as n → ∞.
Supposing a ∈ A and p ∈ S, we have

sp(a; {kn}∞n=1) = lim
n→∞

sp(a, [sn, sn+1])

= lim
n→∞

Oa(τp|∆sn+1
sn (τp)

)
∣∣∆sn+1

sn (τp)
∣∣ =

∑

β∈θ(a)

v(β).(10)

Proof. 1. We prove the equality (10) first. Let τp be the induced spread pattern
from p ∈ S. Suppose

Fτp = ∪∞i=0Σ(i)
τp

is the decomposition of the support of τp. For n ∈ N, supposing α represents p(0)

in A, we have

Oa(τp|Σ(n)
p

) =
∑

q∈S, q(ε)=a
number of occurrences of q in τp with root in Σ(n)

p

=
∑

β∈θ(a)

Oβ(τp|∆n+m−1
n−1 (τp))(11)

=
∑

β∈θ(a)

∣∣∣Π(p(n)
α )
∣∣∣
β

.

The equality (11) holds due to the fact that once q appears in ∆n+m−1
n−1 (τp) and

q(ε) = a, then q contributes an a′s in the nth layer Σ
(n)
τp in Fτp . Therefore, supposing

α ∈ A represents p(0), we have

sp(a; {kn}∞n=1) = lim
n→∞

sp(a, [sn, sn+1])

= lim
n→∞

Oa(τp|∆sn+1
sn (τp)

)
∣∣∆sn+1

sn (τp)
∣∣

= lim
n→∞

∑sn+1

r=sn+1

∑
β∈θ(a)

∣∣∣Π(p
(r)
α )
∣∣∣
β

σ
(sn+1)
α + · · ·+ σ

(sn+1)
α

=
∑

β∈θ(a)

lim
n→∞

∑sn+1

r=sn+1

∣∣∣Π(p
(r)
α )
∣∣∣
β∑sn+1

r=sn+1 σ
(r)
α

=
∑

β∈θ(a)

v(β).

The last equality follows from Lemma 3 and Lemma 2.
2. Then the equality (9) follows from the same argument as above and the

second part of Lemma 3. This completes the proof. �

2.2.2. Spread rate of a pattern. Given an m-spread model S over A, and {kn}∞n=1 is
a increasing sequence of natural numbers, Theorem 4 unveils that we can compute
the spread rate of a symbol a ∈ A within the range ∆

sn+1
sn , where {sn}∞n=1 is defined

in (2). For a pattern η appearing in a p ∈ S, that is, where η is a subpattern of p,
the method developed in Theorem 4 also allows us to compute the spread rate of
the pattern η. Define

S(0) = {p0 ∈ Pm−1 : p(0) is parent of a p ∈ S}.
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For a natural number r with r ≤ m − 1, we say a pattern η ∈ Pr appears in some
p(0) ∈ Pm−1 if p(0)|Fp∩∆r = η; that is, η is a subpattern of p(0) on Fp ∩∆r. The
aim of this section is to compute the spread rate

(12) sp(η; {kn}∞n=1) = lim
n→∞

sp(η; [sn, sn+1]) := lim
n→∞

Oη(τp|∆sn+1−r
sn (τp)

)
∣∣∆sn+1−r

sn (τp)
∣∣ .

Define

Ar = {η̃ ∈ Pr : η̃ appears in some p(0) ∈ S(0)}.

We construct a new spread model over Ar, say Sr, in the following. Letting p ∈ S
(= Sm) and F = Fp be the support of the pattern p, we define a pattern p̃ ∈
Prm−r ∩ AFm−rr as follows, where Prm−r is the set of all (m − r)-patterns in which
each symbol is an r-pattern in Pr. For all g ∈ Fm−r if p|

F
(g)
r

= q ∈ Ar, we then

define p̃g = q, i.e., we replace every subpattern of p in F
(g)
r for all g ∈ Fm−r by a new

symbol q ∈ Ar. Note that S is an m-spread model and that p̃ = p̃(p) is well-defined
since every subpattern p|

F
(g)
r
∀g ∈ Fm−r appears in some p(0) ∈ S(0). Let p̃ be the

symbol in Ar representing p, then define an (m− r)-spread model with respect to
S by Sr = {p̃(p)}p∈S . Theorem 5 below shows that the new (m− r)-spread model
help us to compute the spread rate of the pattern η ∈ Pr.

Theorem 5. Let S be an m-spread model over A and {kn}∞n=1 ⊆ N be an increasing
sequence with kn →∞ as n→∞. For r ≤ m− 1, suppose Sr is the (m− r)-spread
model with respect to S over Ar. Then, for any η ∈ Pr, we have

(13) sp(η; {kn}∞n=1) = sp̃(η̃; {kn}∞n=1),

where p̃ (resp. η̃) is the pattern (resp. symbol) in Prm−r (resp. Ar) representing p
(resp. η). Furthermore, (13) is also valid for the case where kn = k ∀n ∈ N.

Proof. It is sufficient to prove the case where kn →∞ as n→∞ and the other case
can be treated in the same fashion. According to definition (12), for every p ∈ S,

there is a pattern p̃ = p̃(p) ∈ AFm−rr ∩ Prm−r representing p. Let τp (resp. τp̃) be
the infinite spread pattern induced from p (resp. p̃) with respect to S (resp. Sr).
Suppose Fτp (resp. Fτp̃) is the support of τp (resp. τp̃). It can be easily checked

that Fτp = Fτp̃ . Supposing Fτp = ∪∞i=1Σ
(i)
τp (Fτp̃ = ∪∞i=1Σ

(i)
τp̃ ), it follows from the

definitions of the spread mode and Sr, we have

Oη(τp|∆i+r−1
i−1 (τp)) = Oη̃(τp̃|Σ(i)

p̃

) for 0 ≤ i ∈ N.
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Therefore,

sp(η; {kn}∞n=1) = lim
n→∞

sp(η; [sn, sn+1 − r])

= lim
n→∞

Oη(τp|∆sn+1−r
sn (τp)

)
∣∣∣∆sn+1−r

sn (τp)
∣∣∣

= lim
n→∞

Oη(τp|∆sn+r
sn (τp)) +Oη(τp|∆sn+1+r

sn+1 (τp)) + · · ·+Oη(τp|∆sn+1+r
sn+1

(τp)
)

∣∣∣∆sn+1−r
sn (τp)

∣∣∣

= lim
n→∞

Oη̃(τp̃|Σ(sn+1)
p̃

) +Oη̃(τp̃|Σ(sn+2)
p̃

) + · · ·+Oη̃(τp̃|
Σ

(sn+1+1)

p̃

)
∣∣∣∆sn+1−r

sn (τp)
∣∣∣

= lim
n→∞

Oη̃(τp̃|∆sn+1
sn (τp̃)

)
∣∣∣∆sn+1−r

sn (τp)
∣∣∣

= lim
n→∞

Oη̃(τp̃|∆sn+1
sn (τp̃)

)
∣∣∆sn+1

sn (τp̃)
∣∣

= sp̃(η̃; {kn}∞n=1).

This completes the proof. �

2.2.3. Comparison of two spread models. In this section, we discuss the spread rate
of an a ∈ A of two topological spread models so as to achieve the second goal stated
in the introduction.

Let A be a type set, and S and S ′ be two m-spread models over A. Suppose S
and S′ are the corresponding induced 1-spread models of S and S ′ over A and A′

respectively. Write d = minα∈A σ
(1)
α and D = maxα∈A σ

(1)
α for S, and d′ and D′

for S′ in a similar manner.

Lemma 6 (Theorem 4.5.12 Lind and Marcus (1995)). Let A be a primitive matrix
with Perron eigenvalue ρ. Let v, w be right, left Perron eigenvectors of A, i.e.,
vectors v, w > 0 such that Av = ρv, that wA = ρw, and that w · v = 1. Then, for
each i, j,

Ani,j = [(v(i)w(j)) + λij(n)]ρn,

where λij(n)→ 0 as n→∞.

Lemma 7 (Theorem 4.4.7 Lind and Marcus (1995)). Let A be an irreducible matrix,
0 ≤ B ≤ A, and Bkl < Akl for a pair k, lof indices. Then ρB ≤ ρA.

Theorem 8. Suppose that S and S′ are two m-spread models over A, that S, S′,
d, D, d′, D′,A, A′ are defined as above, and that A = A′.

(i) If D′ < d, then for any {kn}∞n=1 with kn →∞, p ∈ S and a ∈ A we have

(14) lim
n→∞

Oa(τ ′p|∆sn+1
sn (τ ′p)

)

Oa(τp|∆sn+1
sn (τp)

)
= 0,

where the sequence {sn}∞n=1 is defined in (2).
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(ii) Under the same condition of (i), for all p ∈ S, a ∈ A and k ∈ N, we have

(15) lim
n→∞

Oa(τ ′p|∆k(n+1)
kn (τ ′p)

)

Oa(τp|∆k(n+1)
kn (τp)

)
= 0.

(iii) If
∣∣∣Π(p

(1)′
α )

∣∣∣
β
≤
∣∣∣Π(p

(1)
α )
∣∣∣
β

and there exists a pair (γ, δ) ∈ A2 such that
∣∣∣Π(p

(1)′
γ )

∣∣∣
δ
<
∣∣∣Π(p

(1)
γ )
∣∣∣
δ
, then for any {kn}∞n=1 with kn → ∞, p ∈ S and

a ∈ A, the equality (14) holds.
(iv) Under the same condition of (iii), for all p ∈ S, a ∈ A and k ∈ N, the

equality (15) holds.

Proof. 1. It follows from the same argument in the proof of Theorem 3.4 Ban et al
(2021) that we have ρ′ < ρ.

Let M = [mγ,δ], M
′ = [m′γ,δ] be the corresponding ξ-matrices of the 1-spread

models induced from S and S′. Denote Mn = [m
[n]
γ,δ] and M′n = [m

′[n]
γ,δ ] for n ∈ N.

Then, for α ∈ A, we have

∑

α∈A

∣∣∣Π(p(n)′
α )

∣∣∣
β

=
∑

α∈A
m
′[n]
β,α ≤ c2(v′) (ρ′)

n

=

(
c2(v′)
c1(v)

)(
ρ′

ρ

)n
c1(v)ρn

≤
(
c2(v′)
c1(v)

)(
ρ′

ρ

)n ∑

α∈A
m

[n]
β,α

≤
(
c2(v′)
c1(v)

)(
ρ′

ρ

)n ∑

α∈A

∣∣∣Π(p(n)′
α )

∣∣∣
β
.

Therefore,

(16)

∑
α∈A

∣∣∣Π(p
(n)′
α )

∣∣∣
β

∑
α∈A

∣∣∣Π(p
(n)
α )
∣∣∣
β

≤
(
c2(v′)
c1(v)

)(
ρ′

ρ

)n
.

It follows from (16) and from Lemma 6 that for all α, β, α′, β′ ∈ A we have
(17)∣∣∣Π(p

(n)′
α′ )

∣∣∣
β′∣∣∣Π(p

(n)
α )
∣∣∣
β

≤ (c3 + λ(n))

∑
α∈A

∣∣∣Π(p
(n)′
α )

∣∣∣
β

∑
α∈A

∣∣∣Π(p
(n)
α )
∣∣∣
β

≤ (c3 + λ1(n))

(
c2(v′)
c1(v)

)(
ρ′

ρ

)n
,

where c3 is a constant and λ1(n) → 0 as n → ∞. Suppose Fτp = ∪∞i=0Σ
(i)
τp is the

decomposition of the support of τp. It follows from Lemma 6 again that there exists
c4, c5, λ2(n) and λ3(n) with λ2(n) → 0, λ3(n) → 0 as n → ∞ such that for any
α1, β1, α2, β2 ∈ A,

(18)

∑
β∈θ(a)

∣∣∣Π(p
(n)′
α )

∣∣∣
β

∑
β∈θ(a)

∣∣∣Π(p
(n)
α )
∣∣∣
β

=
(c4 + λ2(n))

∣∣∣Π(p
(n)′
α1 )

∣∣∣
β1

(c5 + λ3(n))
∣∣∣Π(p

(n)
α2 )
∣∣∣
β2

.
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Combining (17) with (18) yields

0 ≤ lim
n→∞

Oa(τ ′p|∆sn+1
sn (τ ′p)

)

Oa(τp|∆sn+1
sn (τp)

)
= lim
n→∞

∑
β∈θ(a)

∣∣∣Π(p
(n)′
α )

∣∣∣
β

∑
β∈θ(a)

∣∣∣Π(p
(n)
α )
∣∣∣
β

= lim
n→∞

(c4 + λ2(n))
∣∣∣Π(p

(n)′
α1 )

∣∣∣
β1

(c5 + λ3(n))
∣∣∣Π(p

(n)
α2 )
∣∣∣
β2

= lim
n→∞

(c4 + λ2(n))

(c5 + λ3(n))
(c3 + λ1(n))

(
c2(v′)
c1(v)

)(
ρ′

ρ

)n

= 0.

This completes the proof.
2. The proof is almost identical to the proof of (i) of Theorem 8, so we omit it.

3. We note that the assumption of
∣∣∣Π(p

(1)′
α )

∣∣∣
β
≤
∣∣∣Π(p

(1)
α )
∣∣∣
β

for all α, β ∈ A

implies M′ ≤ M. Furthermore, the condition
∣∣∣Π(p

(1)′
γ )

∣∣∣
δ
<
∣∣∣Π(p

(1)
γ )
∣∣∣
δ

infers that

m′γ,δ <mγ,δ for indices γ, δ ∈ A. Hence, Lemma 7 is applied to show that ρ′ < ρ.
On the other hand,

∣∣∣Π(p(n)′
α )

∣∣∣
β

= m
′[n]
β,α ≤ c2(v′)(ρ′)n =

(
c2(v′)
c1(v)

)(
ρ′

ρ

)n
c1(v)ρn

≤
(
c2(v′)
c1(v)

)(
ρ′

ρ

)n
m

[n]
β,α

=
∣∣∣Π(p(n)

α )
∣∣∣
β
.

Thus, ∣∣∣Π(p
(n)′
α )

∣∣∣
β∣∣∣Π(p

(n)
α )
∣∣∣
β

≤
(
c2(v′)
c1(v)

)(
ρ′

ρ

)n
.

Using the same argument as above, we have

0 ≤ lim
n→∞

Oa(τ ′p|∆sn+1
sn (τ ′p)

)

Oa(τp|∆sn+1
sn (τp)

)
= lim
n→∞

∣∣∣Π(p
(n)′
α )

∣∣∣
β∣∣∣Π(p

(n)
α )
∣∣∣
β

≤ lim
n→∞

(
c2(v′)
c1(v)

)(
ρ′

ρ

)n

= 0.

This completes the proof.
4. The proof follows the same method as in the proof of (iii), so we omit it. �

Remark 9. Theorem 8 allows one to show, by comparing ξ-matrices M and M′,
the numbers of occurrences in one model would dominate those in another model.
More specifically, Theorem 8 (i) implies that the minimal column sum of M is
strictly larger than the maximal column sum of M′, while Theorem 8 (iii) require
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only M ≥ M′ entrywise with a strictly larger entry. These concrete criteria can
then be put into practical applications.

3. Random m-spread models

3.1. Notations and setup. In this section, we consider m as a fixed natural
number and adopt the notations defined in Section 2.2 such as A, Tb, ∆n, ∆n

m,

∆n
m(τα), |g|, Pn, and α(0), Σ

(r)
α , σ

(1)
α for α ∈ Pm, etc.

In addition, for any n and each n-pattern α = αni ∈ Pn introduced in Section
2.1, we also define the following:

(i) When α = αni ∈ Pn, we write (αni )(0) for α(0).

(ii) We write Σ
(r)
α = {gα,r1 , gα,r2 , · · · , gα,r

σ
(r)
α

}.
(iii) For each r = 1, 2, · · · , n − 1, j = 1, 2, · · · , σ(r)

α , let α
(r)
j (=(αni )

(r)
j ) be the

subtree rooted at gα,rj in the rth level of α and up to the nth level in α.

(iv) Let ε(α) be the root of α.
(1) Each m-pattern α ∈ Pm is determined by its parent α(0) and its children

α
(1)
j , j = 1, 2, · · · , σ(1)

α . Denoted this pattern by

α = (α(0);α
(1)
1 , α

(1)
2 , · · · , α(1)

σ
(1)
α

).

We will also use the similar notations σ
(r)
ζ , ζ(0), and ζ

(r)
j , etc. for the random

pattern ζ defined later in this section and, in this case, these quantities will become
random elements.

3.1.1. The random m-patterns and the random m-spread model. LetQm be a subset
of Pm such that, for every β ∈ Qm, there exists q ∈ Qm such that

β
(1)
j = q(0) for all j = 1, 2, · · · , σ(1)

β .

Since Pm is finite, so is Qm. Let Qm = {αm1 , · · · , αmlm}.
Let Q(0)

m = {β(0) : β ∈ Qm} be the collection of the parents of all m-patterns in

Qm. We call Q(0)
m the parent set of Qm.

Let f : Q(0)
m ×Qm → [0, 1] be a function such that

(i) for any α ∈ Q(0)
m and any β ∈ Qm, if β(0) 6= α, then f(α, β) = 0;

(ii) for each α ∈ Q(0)
m ,

∑
β∈Qm

f(α, β) = 1.

So, for any fixed α ∈ Q(0)
m , f(α, ·) ≡ {f(α, β) : β ∈ Qm} forms a probability

distribution. Each f(α, β) can be considered as the probability for the (m − 1)-
pattern α to grow into the m-pattern β. Therefore, by Kolmogorov extension
theorem, we can construct a probability space (Ω,F ,P) and random elements {ζα :

α ∈ Q(0)
m } such that, for each α, ζα is a Qm-valued random element on (Ω,F ,P)

such that (ζα)(0)(ω) = α for each ω ∈ Ω and the probability of ζα taking value at
β ∈ Qm is f(α, β). Such a random element ζα is called a random m-pattern with

pattern distribution f(α, ·) on Q(0)
m ×Qm.

The nonempty collection R = {ζα : α ∈ Q(0)
m } of random m-patterns is called

the random m-spread model over the type set A with pattern distribution f on

Q(0)
m × Qm. Note that, if ζα ∈ R and f(α, β) > 0 for β ∈ Qm, then for all

j = 1, 2, · · · , σ(1)
β , ζ

β
(1)
j
∈ R.
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Remark 10. The domain Q(0)
m ×Qm of the pattern distribution function f is chosen

to make each (m− 1)-pattern in the tree to grow into an m-pattern with probability
one. In this case, the tree will grow continuously. However, the function f can be
defined on Pm−1 × Pm as a generalization of our model. Similar discussions and
proofs in this paper can be adapted by adding a ”pattern” to represent the possible
situation in which the (m − 1)-pattern does not grow at all and the corresponding
subtree terminates.

For any α ∈ Q(0)
m such that ζα ∈ R, let τm−1

α = α and we will construct a se-
quence {τm+n

α }n≥0 of random elements on the probability space (Ω,F ,P) and each
realization of {τm+n

α }n≥0 can be considered as a growing tree and can be used to
describe the evolution of the type structure of the population over time. Here, τm−1

α

represents the initial type structure for the population from time (i.e., generation)
0 up to time (i.e., generation) m− 1.

For n = 0, since α ∈ Q(0)
m , it is the parent of some m-pattern in Qm. So, we can

replace α with an m-pattern αmi ∈ Qm to obtain a random element τmα on (Ω,F ,P)
with probability

P(τmα = αmi ) = f(α, αmi )

for all i = 1, 2, · · · , lm. Note that τmα has the same distribution as the random
m-pattern ζα.

For n = 1, if τmα = αmi0 , then (αmi0 )
(1)
j ∈ Q

(0)
m for j = 1, 2, · · · , σ(1)

αmi0
and so we can

replace each of them with some αmij ∈ Qm to obtain a (m+1)-pattern αm+1
i ∈ Pm+1

as the value of τm+1
α with probability

P(τm+1
α = αm+1

i |τmα = αmi0 )

=

σ
(1)

αm
i0∏

j=1

P
(
(τm+1
α )

(1)
j = αmij |τmα = αmi0

)

=

σ
(1)

αm
i0∏

j=1

f
(
(αmi0 )

(1)
j , αmij

)

with the assumption that the replacements of each (m − 1)-pattern with an m-
pattern is independent of the simultaneous replacement of other (m− 1)-patterns.
It should be noted that this probability is possibly positive only when (αmij )(0) =

(αmi0 )
(1)
j for all j. Hence, the type structure in the first m + 1 generations of τmα

and τm+1
α are identical with probability 1. Therefore, we can consider that τmα is

growing into τm+1
α . Here, τm+1

α is a random element taking values in Pm+1.
Figures 4 and 5 are examples, with m = 2, which illustrate how 1-patterns α1

i1

and α1
i2

grow into 2-patterns α2
j1
, α2

j2
, α2

j3
and α2

j4
with respect to the corresponding

probabilities. Figure 6 gives some ideas about a 2-pattern growing into a 3-pattern.
Assume that τm+n

α is constructed and note that τm+n
α takes values in Pm+n.

Given τm+n
α = αm+n

i0
∈ Pm+n, we then replace each (m−1)-pattern (αm+n

i0
)
(n+1)
j ∈

Q(0)
m rooted at g

αm+n
i0

,n+1

j , j = 1, 2, · · · , σ(n)

αm+n
i0

, with some αmij ∈ Qm to obtain a
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a

a a

a

a

a a

a

a

a

a

a

b

b

a

a

a

a

b

τ 2α = α2
j1

τ 2α = α2
j2

τ 2α = α2
j3

∈ P1

∈ P2

with probability
f(α1

i1
, α2

j1
) ≥ 0

with probability
f(α1

i1
, α2

j2
) = 0

with probability
f(α1

i1
, α2

j3
) ≥ 0

α1
i1

α2
j1

α2
j2

α2
j3

Given τ 1α = α = α1
i1

Figure 4. Illustration of a 1-spread pattern α1
i1

growing into a
2-spread pattern

a

b

a

a

a

a

b

a

b

b

a

b

a b

τ 2α = α2
j3

τ 2α = α2
j4

τ 2α = α2
j5

∈ P1

∈ P2

with probability
f(α1

i2
, α2

j3
) = 0

with probability
f(α1

i2
, α2

j4
) ≥ 0

with probability
f(α1

i2
, α2

j5
) ≥ 0

α1
i2

α2
j3

α2
j4

α2
j5

Given τ 1α = α = α1
i2

Figure 5. Illustration of a 1-spread pattern α1
i2

growing into a
2-spread pattern

a

a

a a

a

b

a

a

a

a

a

b

a

b

a b

a

a

a

a

a

b

a

a

a

b

a b

τ 3α = α3
k1

τ 3α = α3
k2

∈ P2

∈ P3

with probability
f(α1

i1
, α2

j1
) · f(α1

i2
, α2

j5
) ≥ 0

with probability
f(α1

i1
, α2

j3
) · 0 = 0

α2
j1

α3
k1

α3
k2

Given τ 2α = α2
j1

· · ·

Figure 6. Illustration of a 2-spread pattern α2
j1

growing into a
3-spread pattern
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(m+ n+ 1)-pattern αm+n+1
i as the value of τm+n+1

α with probability

P(τm+n+1
α = αm+n+1

i |τm+n
α = αm+n

i0
)

=

σ
(n+1)

α
m+n
i0∏

j=1

P
(
(τm+n+1
α )

(n+1)
j = αmij |τm+n

α = αm+n
i0

)

=

σ
(n+1)

α
m+n
i0∏

j=1

f
(
(αm+n
i0

)
(n+1)
j , αmij

)
,

which is possibly positive only when (αmij )(0) = (αm+n
i0

)
(n+1)
j for all j. We also have

that the type structure in the first m+ n+ 1 generations of τm+n
α and τm+n+1

α are
identical with probability 1.

We continue this process and obtain a sequence {τm+n
α }n≥0 of almost surely

growing random trees. Therefore, the limit τα ≡ lim
n→∞

τm+n
α exists with probability

1. The random element τα takes values on Ad̄, where d̄ = max
β∈Qm

(
max

0≤i≤m
σ

(i)
β

)
as

defined in Section 2.1, and, for almost every ω ∈ Ω, τm+n
α (ω) is the subtree from

the root of τα(ω) to the (m + n)th level of τα(ω), for all n = 0, 1, 2, · · · . We call
τα the infinite random spread pattern induced from the random m-pattern ζα with
respect to the random m-spread model R and pattern distribution f .

So, we can ask the same questions proposed for the topological m-spread model
here. Namely,if Oa(τα|∆s

r(τα)) is the occurrences of a ∈ A in τα from level r + 1 to
level s, then we will ask what happens to the rate

sα(a; {kn}∞n=1) := lim
n→∞

sα(a; [sn, sn+1]) := lim
n→∞

Oa(τα|∆s
r(τα))

|∆s
r(τα)| ,

where {kn}∞n=1 ⊆ N is a sequence of natural numbers with kn →∞ as n→∞ and

sn =
n∑
i=1

ki, and

sα(a; k) = lim
n→∞

sα(a; [kn, k(n+ 1)])

which is the case when kn = kn in the above.

3.1.2. Induced branching processes. In order to investigate the type structure of
the infinite tree τα induced by the random m-spread model R, we will construct

a multitype branching process {~Zn}n≥0 on the same probability space (Ω,F ,P) in

which each (m − 1)-pattern is considered as a type. Let A = Q(0)
m and note that

we have removed some (m− 1)-patterns from Pm−1 to obtain the subset A as long
as none of those patterns has a chance (with probability 0) to be a “parent” or a
“child” of any m-pattern in the family initiated by the given initial (m−1)-pattern
α. Since Pm−1 is finite, the set A is well-defined and finite.

Let A = {α1, α2, · · · , αk} be the type set for the branching process {~Zn}n≥0

to be constructed. Let τm−1
α = α = αi0 for some αi0 ∈ A, and let the induced

population {~Zn}n≥0 start with an individual of type αi0 ∈ A at time 0, i.e., ~Z0 =
~ei0 , where ~ei0 is the standard unit vector with 1 as its i0th component and 0

elsewhere. We also write {~Z(i0)
n }n≥0 for {~Zn}n≥0 when ~Z0 = ~ei0 . After one unit

of time, when the type structure of the population in the m-spread model grows
from τm−1

α to τmα , namely the individuals in the mth generation (level) of the
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population are born. At the same time, in the induced population, we replace the

initial (m− 1)-pattern αi0 with σ
(1)
τα , the (m− 1)-patterns rooted at level 1 in τmα ,

to obtain the population
{

(τmα )
(1)
1 , (τmα )

(1)
2 , · · · , (τmα )

(1)

σ
(1)
τα

}

at time 1, which are called the children of the initial (m−1)-pattern in the language

of branching process. Note that each (τmα )
(1)
i is a random element taking values in

the type set A. Let Z
(i0)
1,i be the number of the (m−1)-patterns of type αi in the pop-

ulation at time 1, i = 1, 2, · · · ,k, and call the vector ~Z
(i0)
1 = (Z

(i0)
1,1 ,Z

(i0)
1,2 , · · · ,Z

(i0)
1,k )

the population vector at time 1. Then we have that | ~Z(i0)
1 | = σ

(1)
τα and, for any

~r = (r1, r2, · · · , rk),

P(i0)(~r)

≡ P(~Z
(i0)
1 = ~r) which is the probability that an individual of type αi0

in the induced process produces rj children of type αj , j = 1, 2, · · · ,k.
=

∑
β∈Qm s.t.
T(β)=~r

f(αi0 , β)

where T(β) = (t1, t2, · · · , tk) is the vector with ti as the number of the (m − 1)-

patterns of type αi among
{
β

(1)
1 , β

(1)
2 , · · · , β(1)

σ
(1)
β

}
, i = 1, 2, · · · ,k.

Next, after another unit of time, the type structure of the population grows from

τmα to τm+1
α . So, again in the induced population, we replace σ

(1)
τα (m− 1)-patterns

rooted at individuals in the 1st generation with σ
(2)
τα (m− 1)-patterns

{
(τm+1
α )

(2)
1 , (τm+1

α )
(2)
2 , · · · , (τm+1

α )
(2)

σ
(2)
τα

}

rooted at individuals in the 2nd generation in τm+1
α to obtain the population vector

~Z
(i0)
2 = (Z

(i0)
2,1 ,Z

(i0)
2,2 , · · · ,Z

(i0)
2,k ) at time 2 and so on. Let ~Z

(i0)
n = (Z

(i0)
n,1 ,Z

(i0)
n,2 , · · · ,Z

(i0)
n,k )

be the population vector at time n, where Z
(i0)
n,i is the number of the (m−1)-patterns

of type αi among the population
{

(τm+n−1
α )

(n)
1 , (τm+n−1

α )
(n)
2 , · · · , (τm+n−1

α )
(n)

σ
(n)
τα

}

at time n. Then such a process {~Zn}n≥0 is called the induced process with the
induced type set A from the random m-spread model R.

From the construction, for almost every realization of the infinite spread pattern

τα, there is a corresponding realization of the process |~Zn| and each (m−1)-pattern
rooted at a node in the nth level of τα represents an individual in the nth generation

of |~Zn|. Therefore, we directly obtain the following basic connection between them.

Lemma 11. If α = αi0 ∈ A, then, for all n = 0, 1, 2, · · · , |~Z(i0)
n | = σ

(n)
τα with

probability 1.

If we let

{~ξ(i)}ki=1 = {(ξ(i)
1 , ξ

(i)
2 , · · · , ξ(i)

k )}ki=1
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be the offspring vectors of the induced process {~Z(i0)
n }n≥0, where ξ

(i)
j denotes the

number of children of type αj of an individual of type αi, then

P(~ξ(i) = ·) = P(~Z
(i)
1 = ·) ≡ P(i)(·)

is the offspring distribution.
Moreover, we have that

~Z
(i0)
n+1 =

σ(n)
τα∑

j=1

T
(
(τm+n
α )

(n)
j

)
=

k∑

i=1

Z
(i0)
n,i∑

r=1

~ξ(i)
n,r.

where ~ξ
(i)
n,r is the offspring vector of the rth individual of type αi at time n and

has the same distribution as ~ξ(i) for all r and all n. Hence, the induced process

{~Z(i0)
n }n≥0 satisfies the characteristics of the branching process and, therefore, is

indeed a branching process.

Proposition 12. The induced process {~Zn}n≥0 from any random m-spread model
R is a multi-type Galton-Watson branching process with the type set A and the
offspring distribution {P(i)(·)}ki=1 as defined above.

Therefore, according to Section 2.2 in Ban et al (2021), we can construct a

random 1-spread model R =
{
p

(1)
αi

}k
i=1

with type set A = {αi}ki=1 and spread

distribution {P(i)(·)}ki=1, for which the induced branching process {~Zn}n≥0 is the
underlying branching process. Note that, for each α ∈ A, each pattern can be
written as a tuple

p
(1)
α = (α;α

(1)
1 · · ·α

(1)

σ
(1)
α

),

where σ
(1)
α is the number of the children of the ancestor α, and if α = αi for some

i = 1, 2, · · · ,k, then σ
(1)
α = |Z(i)

1 |. We also call
{
p

(1)
αi

}k
i=1

the random 1-spread
model induced by the random m-spread model S or induced 1-spread model.

For n ∈ N and p
(n)
α , a pattern of the nth generation, the offspring type chart of

α in n generations is

Π(p
(n)
α ) = (α

(n)
1 · · ·α(n)

σ
(n)
α

) ∈ Aσ(n)
α

and, if α = αi and β = αj , then
∣∣∣Π(p

(n)
α )
∣∣∣
β

= Z
(i)
n,j .

Let M = [mij ]k×k be the offspring mean matrix of the induced branching process

{Z(i0)
n }n≥0, where

mij = E(Z
(j)
1,i ) = E

(∣∣∣
∏

(p
(1)
αj )
∣∣∣
αi

)
.

and let M(n) = [m
(n)
ij ]k×k, where

m
(n)
ij = E(Z

(j)
n,i) = E

(∣∣∣
∏

(p
(n)
αj )
∣∣∣
αi

)
.

and it is known that M (n) = Mn for all n = 1, 2, · · · .
Since we obtain the type set A by removing the (m − 1)-patterns for which it

is impossible (with probability 0) to be the “parent” or a “child” of any m-pattern

from Pm−1, so the induced branching process {~Zn}n≥0 is positive regular. Note
that a branching process is said to be singular if every individual in the population
only produces exactly one child with probability one and, by Lemma 11, we have
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that the corresponding infinite spread pattern τα only has one node in each level
with probability one in this case which is not of our interest. Therefore, throughout

this paper, we assume that the induced branching process {~Zn}n≥0 is non-singular.
Then, we have the growth rate regarding the induced branching process.

Lemma 13 (Proposition 3.5. and Theorem 3.7. Ban et al (2021)). Let {~Zn}n≥0

be the induced branching process from the random m-spread model R. Let M be
the offspring mean matrix with the spectral radius ρ > 1 and the corresponding left
and right eigenvectors ~u = (u1, · · · ,uk) and ~v = (v1, · · · ,vk) such that ~v · ~1 = 1
and ~v · ~u = 1. Then,

(i) for every i = 1, 2, · · · ,k,

P(σ
(n)
αi →∞) = 1;

(ii) for all i, j = 1, 2, · · · ,k,

lim
n→∞

m
(n)
ij

ρn
= viuj ;

(iii) for every i = 1, 2, · · · ,k, there exists a random variable Wi such that, for
every j = 1, 2, · · · ,k,

lim
n→∞

∣∣∣
∏

(p
(n)
αi )
∣∣∣
αj

ρn
= ujWi w.p.1;

(iv) for every i = 1, 2, · · · ,k,

sαi(αj) = lim
n→∞

s(n)
αi (αj) ≡ lim

n→∞

∣∣∣
∏

(p
(n)
αi )
∣∣∣
αj

σ
(n)
αi

= vj w.p.1.

The above lemma tells that the number of individuals in the nth generation
grows geometrically like ρn and the proportion of individuals of type type αi in
the nth level eventually will tend to the ith component of the right eigenvector
~v. The next lemma gives us the information about the composition of the types
when we look at more than one generation at once. In particular, we consider a

sequence {kn}∞n=1 with kn →∞ as n→∞ and sn =
n∑
r=1

kn and then study the type

composition of the individuals from the knth generation to the kn+1th generation.

Lemma 14. Let {~Zn}n≥0 be the induced branching process from the random m-
spread model R. Let M be the offspring mean matrix with ρ, ~u and ~v as defined
in Lemma 13. Suppose that {kn}∞n=1 is a sequence of positive integers such that

kn →∞ as n→∞. Let sn =
n∑
r=1

kn. Then, for any αi, αj ∈ A, we have that

sαi(αj ; {kn}∞n=1) := lim
n→∞

Oαj (ταi |∆sn+1
sn (ταi )

)

|∆sn+1
sn (ταi)|

= vj

with probability 1. In particular, if kn = k for all n ∈ N, then, we have that

sαi(αj ; k) := lim
n→∞

Oαj (ταi |∆k(n+1)
kn+1 (ταi )

)

|∆k(n+1)
kn+1 (ταi)|

= vj

with probability 1.
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Proof. Let Bi = {ω ∈ Ω : σ
(n)
αi (ω) → ∞} be the event of non-extinction of the

induced process {~Z(i)
n }∞n=0 initiated with ~Z

(i)
0 = ~ei. By Lemma 13 (i) and (iv), we

have that P(Bi) = 1 and, on the event Bi,

sαi(αj) = lim
n→∞

s(n)
αi (αj) ≡ lim

n→∞

∣∣∣
∏

(p
(n)
αi )
∣∣∣
αj

σ
(n)
αi

= vj w.p.1.

So, for any j = 1, 2, · · · ,k, let

Ei,j =

{
ω ∈ Bi :

∣∣∏(p(n)
αi

)(ω)
∣∣
αj

σ
(n)
αi

(ω)
→ vj

}

then we have that P(Bi \ Ei,j) = 0. Hence, P(Bi \
⋂k
j=1 Ei,j) = 0 and, for each

ω ∈ ⋂k
j=1Ei,j , for every r = sn + 1, · · · , sn+1, we have that, as n→∞,

∣∣∏(p(r)
αi

)(ω)
∣∣
αj

σ
(r)
αi

(ω)
→ vj and

sn+1∑
r=sn+1

σ
(n)
αi (ω)→∞.

Therefore, by Lemma 2 in Section 2.2, we have that

sαi(αj ; {kn}nk=1)(ω)

= lim
n→∞

Oαj (ταi |∆sn+1
sn (ταi )

)

|∆sn+1
sn (ταi)|

= lim
n→∞

sn+1∑
r=sn+1

∣∣∣
∏

(p
(r)
αi )(ω)

∣∣∣
αj

sn+1∑
r=sn+1

σ
(r)
αi (ω)

= vj

which completes the proof of the first part of the lemma and the similar lines can
be adopted to show the second part.

�

Lemma 14 tells us that if we look at the partial type structure from generation

sn+1 to generation sn+1 in the branching tree {~Zn}∞n=0, the rate of the occurrences
of a certain (m − 1)-pattern αj converges to a deterministic value vj as n → ∞.
This idea will give us the answer to the original questions of interest regarding
the infinite spread pattern τα induced from the random m-pattern ζα mentioned
previously.

3.2. Main results.

3.2.1. The spread rates of a type (symbol) and a pattern. Recall that τα is the
infinite spread pattern induced from the random m-pattern ζα with respect to

the random m-spread model and the type set A = {ai}ki=1 and {~Zn}∞n=0 is its
corresponding induced branching process with type set A = {αi}ki=1.

For each a ∈ A, we define

θ(a) = {β ∈ A : ε(β) = a}
where ε(β) is the root of the pattern β.

Theorem 15. Let τα be the infinite spread pattern with the type set A = {ai}ki=1

and {~Zn}∞n=0 be its corresponding induced branching process with type set A =

{αi}ki=1. Let M be the offspring mean matrix of {~Zn}∞n=0 with ρ, ~u and ~v as
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defined in Lemma 13. Suppose that {kn}∞n=1 is a sequence of positive integers such

that kn →∞ as n→∞. Let sn =
n∑
r=1

kn. Then, for any aj ∈ A, we have that

sα(aj ; {kn}∞n=1) = lim
n→∞

Oaj (τα|∆sn+1
sn (τα)

)
∣∣∆sn+1

sn (τα)
∣∣ =

∑

i=1,2,··· ,k s.t.
αi∈θ(aj)

vi

with probability 1. In particular, if kn = kn for all n ∈ N, then, we have that

sα(aj ; k) = lim
n→∞

Oaj (τα|∆k(n+1)
kn (τα)

)
∣∣∆k(n+1)

kn (τα)
∣∣ =

∑

i=1,2,··· ,k s.t.
αi∈θ(aj)

vi

with probability 1.

Proof. Let α = αi0 ∈ A and let Bi0 and Ei0 =
⋂k
j=1 Ei0,j be defined as in the

proof of Lemma 14. Then P(Bi0) = 1, P(Bi0 \ Ei0) = 0, and for every ω ∈ Ei0 , as
n→∞,

sn+1∑
r=sn+1

∣∣∣
∏

(p
(r)
αi0

)(ω)
∣∣∣
αj

sn+1∑
r=sn+1

σ
(r)
αi0

(ω)

→ vj

for all j = 1, 2, · · · ,k. Note that, by the construction of the induced process

{~Zn}n≥0 from the infinite spread pattern τα, we have that for each ω ∈ Ei0 ,

∣∣∆sn+1
sn (τα(ω))

∣∣ =
sn+1∑

r=sn+1
σrτα(ω) =

sn+1∑
r=sn+1

∣∣~Z(i0)
r

∣∣ =
sn+1∑

r=sn+1
σ

(r)
αi0

and, since Z
(i0)
r,i is the number of the (m− 1)-pattern of type αi ∈ A among

{
(τm+r−1
α )

(n)
1 , (τm+r−1

α )
(n)
2 , · · · , (τm+r−1

α )
(n)

σ
(r)
τα

}
,

it implies that

Oaj (τα(ω)|
∆
sn+1
sn (τα(ω))

)

=
sn+1∑

r=sn+1
( the number of occurrences of aj in the rth level of τα(ω))

=
sn+1∑

r=sn+1
( the number of occurrences of aj in the rth level of τm+r−1

α (ω))

=
sn+1∑

r=sn+1
( the number of the (m− 1)-pattern with the root of type aj

at the rth level of τm+r−1
α (ω))

=
sn+1∑

r=sn+1

( ∑
i=1,2,··· ,k s.t.

αi∈θ(aj)

Z
(i0)
r,i (ω)

)

=
sn+1∑

r=sn+1

( ∑
i=1,2,··· ,k s.t.

αi∈θ(aj)

∣∣∏(p
(r)
αi0

(ω))
∣∣
αi

)
.
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Therefore, by Lemma 14, for each ω ∈ Ei0 with P(Bi0 \Ei0) = 0,

sα(aj ; {kn}∞n=1)(ω)

= lim
n→∞

Oaj (τα(ω)|
∆
sn+1
sn (τα)

)
∣∣∆sn+1

sn (τα(ω))
∣∣

= lim
n→∞

sn+1∑
r=sn+1

( ∑
i=1,2,··· ,k s.t.

αi∈θ(aj)

∣∣∏(p
(r)
αi0

(ω))
∣∣
αi

)

sn+1∑
r=sn+1

σ
(r)
αi0

(ω)

=
∑

i=1,2,··· ,k s.t.
αi∈θ(aj)

lim
n→∞

sn+1∑
r=sn+1

(∣∣∏(p
(r)
αi0

(ω))
∣∣
αi

)

sn+1∑
r=sn+1

σ
(r)
αi0

(ω)

=
∑

i=1,2,··· ,k s.t.
αi∈θ(aj)

vi

and, since P(Bi0) = 1, the proof is complete.
�

The following example gives us the main ideas of Theorem 15:

Example 16. Consider there are two types, a and b, that is, the type set is A =
{a, b}. Let m = 2 and it means that the spread depends on the type structure in the
past 2 levels (i.e., generations).

Let Q(0)
2 = {α1, · · · , α5} and Q2 = {α2

1, · · · , α2
10}be defined as illustrated in

Figure 7(a) and in the bottom of Figure 7(c).

Let f : Q(0)
2 ×Q2 → [0, 1] be a pattern distribution function such that

f(α1, α
2
i ) =





2
3 , if i = 1;
1
3 , if i = 2;
0, otherwise;

f(α2, α
2
i ) =





3
4 , if i = 3;
1
4 , if i = 4;
0, otherwise;

f(α3, α
2
i ) =





1
2 , if i = 5;
1
2 , if i = 6;
0, otherwise;

f(α4, α
2
i ) =





1
3 , if i = 7;
2
3 , if i = 8;
0, otherwise;

and

f(α5, α
2
i ) =





1
2 , if i = 9;
1
2 , if i = 10;
0, otherwise.

Note that each 2-pattern in Q2 can be represented s follows:

α2
1 = (α1;α1, α2); α2

2 = (α1;α2, α2); α2
3 = (α2;α4, α5); α2

4 = (α2;α5);
α2

5 = (α3;α1); α2
6 = (α3;α2); α2

7 = (α4;α3, α4); α2
8 = (α4;α3, α5);

α2
9 = (α5;α3); α2

10 = (α5;α1)

Moreover, Figure 7(b) gives an idea how α1 grows into 2-patterns with the corre-
sponding probabilities and Figure 7(c) is an illustration of the pattern distribution f .
So, in this case, if we let R = {ζα1

, ζα2
, ζα3

, ζα4
, ζα5
}, then R is a random 2-spread
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A = , , , ,

α1 α2 α3 α4 α5

⊂ P1
a

a a

a

b

a

a

a

a b

b

a

(a) The type set A
a

a a

a

a

a a

a

b

a

a

a

a

b

α2
1 α2

2

prob = 2
3 prob = 1

3

(b) The spread probability f(α1, ·) from α1

a

a a

a

a

a a

a

b

a

a

a

a

b

α2
1 α2

2

prob = 2
3 prob = 1

3

a

b

a

b

a b

a

b

a

α2
3 α2

4

prob = 3
4 prob = 1

4

a

a

a

a

a a

a

a

b

α2
5 α2

6

prob = 1
2 prob = 1

2

b

a b

b

a

a

b

a b

b

a

a

b

a

α2
7 α2

8

prob = 1
3 prob = 2

3

b

a

b

a

a

b

a

a a

α2
9 α2

10

prob = 1
2 prob = 1

2

(c) The spread distribution

Figure 7. Illustration of Example 16

model generated by the pattern distribution f , where ζα is a random 2-pattern and
the distribution of ζα is given by

P(ζα = β) = f(α, β) =

{
f(αi, α

2
j ), if α = αi and j = 2i− 1, 2i

0, otherwise.

Now, consider the infinite spread pattern τα with the initial 1-pattern α = α1

induced from the random 2-pattern ζα1
with respect to the random spread model

R. Let A = {α1, α2, α3, α4, α5} be the type set for the induced branching process

{~Zn}n≥0. From Figure 7(b) or Figure 7(c), we can see that, in the induced branch-
ing process, one individual of type α1 can produce one child of type α1 and one child
of type α3 with probability 2

3 or can produce one child of type α2 and one child of

type α3 with probability 1
3 , so its offspring means are

m11 = E(Z11|~Z0 = ~e1) = 1 · 2
3 = 2

3 ;

m21 = E(Z12|~Z0 = ~e1) = 1 · 2
3 + 1 · 1

3 = 1;

m31 = E(Z13|~Z0 = ~e1) = 1 · 1
3 = 1

3 ;

m41 = E(Z14|~Z0 = ~e1) = 0;

m41 = E(Z14|~Z0 = ~e1) = 0.
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Similarly, we can compute all the offspring means of individuals of different types:

m42 = E(Z14|~Z0 = ~e2) = 1 · 3
4 = 3

4 ;

m52 = E(Z15|~Z0 = ~e2) = 1 · 1
4 = 1

4 ;

m13 = E(Z11|~Z0 = ~e3) = 1
2 ;

m23 = E(Z12|~Z0 = ~e3) = 1
2 ;

m34 = E(Z13|~Z0 = ~e4) = 1;

m44 = E(Z14|~Z0 = ~e4) = 1
3 ;

m54 = E(Z15|~Z0 = ~e4) = 2
3 ;

m15 = E(Z11|~Z0 = ~e5) = 1
2 ;

m35 = E(Z13|~Z0 = ~e5) = 1
2

and mij=0, otherwise. Thus, we obtain the offspring mean matrix of the induced

branching process {~Zn}n≥0:

M =




2
3 0 1

2 0 1
2

1 0 1
2 0 0

1
3 0 0 1 1

2
0 3

4 0 1
3 0

0 1
4 0 2

3 0



.

Moreover, the spectral radius of M is ρ ≈ 1.4 and its corresponding normalized
right eigenvector ~v ≈ (0.23, 0.25, 0.22, 0.17, 0.13). Note that θ(a) = {α1, α2, α3},
which is the set of patterns rooted at an individual of type a, and θ(b) = {α4, α5}.
So, if we take k = 1 in Theorem 15, then we can obtain the spread rate of type a:

sα(a; 1) = v1 + v2 + v3 = 0.23 + 0.25 + 0.22 = 0.7

and the spread rate of type b is

sα(b; 1) = v4 + v5 = 0.17 + 0.13 = 0.3.

That means, in the long run, the proportion of individuals of type a and type b are
about 70% and 30%, respectively, among the population.

For any r-pattern αrj ∈ Pr, 1 ≤ r ≤ m− 1, let

θr(α
r
j) = {β ∈ A : β|∆r

0(β) = αrj}
and let Oαrj (τα|∆t

s(τα)) be the occurrences of the pattern αrj in ∆t
s(τα), where t−s ≥

r. Then the following theorem gives the spread rate of the patter αrj in the infinite
spread pattern τα:

Theorem 17. Let τα be the infinite spread pattern with the type set A = {ai}ki=1

and {~Zn}∞n=0 be its corresponding induced branching process with type set A =

{αi}ki=1. Let M be the offspring mean matrix of {~Zn}∞n=0 with ρ, ~u and ~v as
defined in Lemma 13. Let 1 ≤ r ≤ m−1 be any fixed positive integer. Suppose that
{kn}∞n=1 is a sequence of positive integers such that kn ≥ r for each n and kn →∞
as n→∞. Let sn =

n∑
r=1

kn. Then, for any αrj ∈ Pr, we have that

sα(αrj ; {kn}∞n=1) = lim
n→∞

Oαrj (τα|∆sn+1
sn (τα)

)
∣∣∆sn+1−r

sn (τα)
∣∣ =

∑

i=1,2,··· ,l s.t.
αi∈θr(αrj )

vi

with probability 1.
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Proof. Since, for each ω ∈ Ei0 defined previously,

∣∣∆sn+1−r
sn (τα(ω))

∣∣ =
sn+1−r∑
t=sn+1

σtτα(ω) =
sn+1−r∑
r=sn+1

∣∣~Z(i0)
t

∣∣ =
sn+1−r∑
t=sn+1

σ
(t)
αi0

and

Oαrj (τα(ω)|
∆
sn+1
sn (τα(ω))

)

=
sn+1−r∑
t=sn+1

( the number of occurrences of the r-pattern αrj rooted in

the tth level of τα(ω))

=
sn+1−r∑
t=sn+1

( the number of occurrences of the r-pattern αrj rooted in

the tth level of τm+t−1
α (ω))

=
sn+1−r∑
t=sn+1

( the number of the (m− 1)-pattern β with the root at

the rth level of τm+t−1
α (ω) such that β|∆r

0(β) = αrj)

=
sn+1−r∑
t=sn+1

( ∑
i=1,2,··· ,l s.t.
αi∈θr(αrj )

Z
(i0)
t,i (ω)

)

=
sn+1−r∑
t=sn+1

( ∑
i=1,2,··· ,l s.t.
αi∈θr(αrj )

∣∣∏(p
(t)
αi0

(ω))
∣∣
αi

)
,

the result can be shown by the similar analogy as in the proof of Theorem 15.
�

3.2.2. Comparison of two random models. Let R and R′ be two random m-spread
models with the same type set A and let τα and τ ′α be the infinite spread patterns

{~Zn}n≥0 and {~Z′n}n≥0 be the corresponding branching processes with the type set
A induced by R and R′,respectively. Let M = [mi,j ]k×k and M′ = [m′i,j ]k×k
be the offspring mean matrices for {~Zn}n≥0 and {~Z′n}n≥0, respectively. Define

d = min
ai∈A

E|Z(i)
1 | and D = max

ai∈A
E|Z(i)

1 | for {~Zn}n≥0. Respectively, we define d′ and

D′ for {~Z′n}n≥0.

Theorem 18. Suppose that R and R′ are two random m-spread models with same

type set A and {~Zn}n≥0 and {~Z′n}n≥0 are the corresponding induced branching
processes with the type set A. Let τα, τ ′α, d, D, d′ and D′ be defined as above.
Then

(i) If D′ < d, then, for any aj ∈ A,

lim
n→∞

E
(
O
aj

(τ ′α|∆sn+1
sn (τ ′α)

)
)

E
(
Oaj (τα|∆sn+1

sn (τα)
)
) = 0,

where {sn}∞n=1 is as defined before. In addition, if we let sn = kn for k ∈ N,
then

lim
n→∞

E
(
O
aj

(τ ′α|∆k(n+1)
kn (τ ′α)

)
)

E
(
Oaj (τα|∆k(n+1)

kn (τα)
)
) = 0.
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(ii) If m′i,j ≤ mi,j for all 1 ≤ i, j ≤ k and there exists a pair (i0, j0) such that
m′i0,j0 <mi0,j0 , then

lim
n→∞

E
(
O
aj

(τ ′α|∆sn+1
sn (τ ′α)

)
)

E
(
Oaj (τα|∆sn+1

sn (τα)
)
) = 0,

where {sn}∞n=1 is defined as before. In addition, if we let sn = kn for k ∈ N,
then

lim
n→∞

E
(
O
aj

(τ ′α|∆k(n+1)
kn (τ ′α)

)
)

E
(
Oaj (τα|∆k(n+1)

kn (τα)
)
) = 0.

Proof. For the induced branching process {~Zn}n≥0, since

E
(∣∣∏(p

(n)
αi )
∣∣
αj

)
= m

(n)
j,i for i, j = 1, 2, · · · ,k,

we have
k∑
i=1

E
(∣∣∏(p

(n)
αi )
∣∣
αj

)
=

k∑
i=1

m
(n)
j,i for j = 1, 2, · · · ,k.

Similarly, for the other induced branching process {~Z′n}n≥0, we have

k∑
i=1

E
(∣∣∏(p

(n)′

αi )
∣∣
αj

)
=

k∑
i=1

m
′(n)
j,i for j = 1, 2, · · · ,k.

Therefore, after taking the expectation on the random variables, the proofs in the
deterministic case can be adopted to prove the results in the random case.

�

Remark 19. Theorem 18 provides a strategy to compare two random m-spread
models. Note that

E|Z(i)
1 | =

k∑

j=1

EZ(i)
1j =

k∑

j=1

mji

is the sum of all the entries in the ith column of the mean matrix M. Thus, the
result in (i). above tells us that, by comparing the minimum and maximum column
sums or the corresponding entries of the mean matrices induced by two m-spread
models, we can determine which model will eventually have a greater number of
occurrences of a given type. This strategy can be used for decision-making about the
epidemic disease prevention and control.

4. Connection between topological models and random models

A random m-spread model with a special m-pattern distribution can be viewed
as a topological m-spread model.

Proposition 20. Let R = {ζαi}li=1 be a random m-spread model with pattern

distribution f on Q(0)
m ×Qm. If, for each αi ∈ Q(0)

m , there exits exactly one βi ∈ Qm
such that (βi)

(0) = αi and f(αi, βi) = 1, then R is a topological m-spread model
with probability 1.

Proof. Since, for each αi ∈ Q(0)
m , there exists a βi ∈ Qm such that f(αi, βi) = 1 > 0,

if, for each i, let Fi = {ω ∈ Ω : ζαi(ω) 6= βi}, then

P(Fi) = 1− P(ζαi = βi) = 1− f(αi, βi) = 0.
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Hence, if we let F = ∪li=1Fi, then P(F ) = 0 and, for every ω ∈ Ω \F , we have that
ζαi(ω) = βi and

R(ω) = {ζαi(ω), · · · , ζαl(ω)} = {β1, · · · , βl}.
Now, we want to claim that R(ω) = {β1, · · · , βl} is a topological m-spread model
for all ω ∈ Ω \ F . So, for any fixed ω ∈ Ω \ F and for any βi = ζαi(ω) ∈ R(ω),

since ζαi ∈ R and f(αi, βi) = 1 > 0, we know that αi ∈ Q(0)
m and βi ∈ Qm. Hence,

(βi)
(1)
j ∈ Q

(0)
m for all j which implies that

ζ
(βi)

(1)
j
∈ R, for all j = 1, 2, · · · , σ(1)

βi
.

and thus, for all j = 1, 2, · · · , σ(1)
βi

,

ζ
(βi)

(1)
j

= ζαj′ , for some ζαj′ ∈ R.

Therefore, there exists exactly one βj′ ∈ Qm such that f(αj′ , βj′) = 1 > 0 and

ζαj′ (ω) = βj′ . This implies that, for any βi ∈ R(ω) and any j = 1, 2, · · · , σ(1)
βi

,

there exists exactly one βj′ ∈ R(ω) and (βj′)
(0) = αj′ = (βi)

(1)
j . So, R(ω) is a

topological m-spread model for all ω ∈ Ω \ F . Note that P(F ) = 0 and hence R is
a topological m-spread model with probability 1. �

Usually, when some strategies are applied to control the spread of a disease,
the spread pattern will change gradually over time, and therefore, we often can
see a mixed pattern or a transition phase. For this reason, we want to develop a
transition model to describe this phenomenon.

Given two topological m-spread models S and S ′ over the same type set A and
with the same parent set S(0) = S ′(0) = {αi}li=1 ⊆ Pm−1, where l = |S(0)|. Note
that, for every α ∈ S(0) = S ′(0), there exist exactly one β ∈ S and one β′ ∈ S ′ such
that β(0) = β′(0) = α.

A random m-spread model R with pattern distribution f is called a transition
model from S to S ′, if, for any αi ∈ S(0) = S ′(0), β ∈ S, β′ ∈ S ′ with αi = β(0) =
β′(0), the pattern distribution f satisfies the following:

(i) if β = β′, then f(αi, β) = f(αi, β
′) = 1 and let xi = 1;

(ii) if β 6= β′, then there exists a number 0 ≤ xi ≤ 1 such that

f(αi, β) = 1− xi and f(αi, β
′) = xi.

In this case, let ~x = (x1, · · · , xl) and we write SR(~x) for R.

Proposition 21. Let SR(~x) be a random m-spread model with pattern distribution
f a transition model from the topological m-spread model S to the topological m-
spread model S ′. Suppose that, for every α ∈ S(0) = S ′(0), β ∈ S, β′ ∈ S ′ with
αi = β(0) = β′(0), we have β 6= β′. Then

(i) If ~x = ~1, then SR(~1) = S ′ with probability 1.

(ii) If ~x = ~0, then SR(~0) = S with probability 1.

Proof. The proof is straightforward if we adopt similar lines as those in the proof
of the previous proposition. �

Remark 22. If there exists i = 1, · · · , l such that αi ∈ S(0) = S ′(0) and β = β′ for
β ∈ S, β′ ∈ S ′ with αi = β(0) = β′(0), then (ii) in Proposition 21 can be modified
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into that SR(~x∗) = S with probability 1 where ~x∗ = (x∗1, · · · , x∗l ) with x∗i = 1 and
x∗j = 0, elsewhere.

Since the transition spread model SR(~x) is a random m-spread model, it induces

a branching process {~Zn}∞n=0 with type set A = S(0) = S ′(0). By Ban et al (2021)
(see also Section 3.1.2 in this paper), there is a corresponding random 1-spread

model R = {p(1)
αi }li=1 to this multi-type branching process.

Now, letting S and S′ be the corresponding induced 1-spread model of S and S ′
over A, respectively, we have the following proposition.

Proposition 23. If R is a transition m-spread model from S to S ′, then R is a
transition 1-spread model from S to S′. More precisely, if R = SR(~x) for some
~0 ≤ ~x ≤ ~1, then R = SR(~x) with probability 1.

Proof. Without loss of generality, we assume that, for each αi ∈ S(0) = S ′(0), β ∈ S
and β′ ∈ S with β(0) = β′(0) = αi, β 6= β′. Then, since R is a transition m-spread
model from S to S ′, there exists a vector ~0 ≤ ~x ≤ ~1 such that R = SR(~x).

Recall that in Section 3.1.2, for β ∈ Qm, T(β) = (t1, t2, · · · , tl) is the vector with

tk as the number of the (m− 1)-patterns of type αk among
{
β

(1)
1 , β

(1)
2 , · · · , β(1)

σ
(1)
β

}
,

k = 1, 2, · · · , l. So, for each αi ∈ S(0) = S ′(0), for any β ∈ S and β′ ∈ S with
β(0) = β′(0) = αi, we have that

T (β) =

(∣∣∣
∏(

β
)∣∣∣
α1

, · · · ,
∣∣∣
∏ (

β
)∣∣∣
αl

)

and

T (β′) =

(∣∣∣
∏(

β′
)∣∣∣
α1

, · · · ,
∣∣∣
∏ (

β′
)∣∣∣
αl

)
.

Then

P(i)

(∣∣∣
∏(

β
)∣∣∣
α1

, · · · ,
∣∣∣
∏ (

β
)∣∣∣
αl

)
= P(i)(T (β)) = P(~Z

(i)
1 = T (β))

= f(αi, β) = xi

and

P(i)

(∣∣∣
∏(

β′
)∣∣∣
α1

, · · · ,
∣∣∣
∏ (

β′
)∣∣∣
αl

)
= P(i)(T (β′)) = P(~Z

(i)
1 = T (β′))

= f(αi, β
′) = 1− xi

and hence R = {p(1)
αi }li=1 = SR(~x) is a transition model from S to S′. �

Therefore, if M, M′ and M(~x) are the ξ-matrices and mean offspring matrix of
the models S, S′ and SR(~x) with spectral radii ρ, ρ′ and ρ(~x), respectively, then,
by Theorem 3.1.2 in Ban et al (2021), we have the following propositions.

Proposition 24. Under the assumptions in Proposition 21 and under the sup norm
for the matrices and vectors, we have

(i) If ~x→ ~0, then ρ(~x)→ ρ.

(ii) If ~x→ ~1, then ρ(~x)→ ρ′.

According to Lemma 13 in Section 3.1.2, we have that, in the induced system,
the spread rate of the transition model SR(~x) gradually changes from the spread

rate of S to that of S′ as ~x→ ~1. Since the m-spread model shares the same spread
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rate with its induced model, the spread rate of the transition model SR(~x) also
gradually changes from the spread rate of the m-spread model S to that of S ′ as
~x→ ~1. Moreover, we have the following proposition:

Proposition 25. Under the sup norm for matrices and vectors, the map ~x→ ρ(~x)
is continuous.

5. Numerical results

This section presents several examples that numerically demonstrate or verify
the validity of the previous theorems.

5.1. Topological models. The experiment below provides an evidence for the
validity of the formula stated in Theorem 4. Let A be the type set consists of two
symbols a and b, and let α1, α2, α3, α4 ∈ P1 be 1-patterns defined as

α1 = (a; a, a, a, b),

α2 = (a; a, a, b, b, b),

α3 = (b; a, b, b, b, b)

α4 = (b; b, b, b, b, b).

Consider a 2-spread model S = {p1, p2, p3, p4} defined by its associated induced
1-order spread model S = {p1,p2,p3,p4} over type set A = {p1, p2, p3, p4} (more
specifically, pi corresponds to pi), where

(19)





p1 = (α1;α1, α2, α2, α3),

p2 = (α2;α1, α2, α4, α4, α4),

p3 = (α3;α1, α3, α4, α4, α4),

p4 = (α4;α3, α3, α4, α4, α4),

and let kn = 2 · blog n+ 1c so that sn is specified according to (2). One can easily
compute the ξ-matrix M associated with model S, which is

M =




1 1 1 0
2 1 0 0
1 0 1 2
0 3 3 3




with v = [0.0905, 0.0463, 0.3075, 0.5558]T its probability right eigenvector. By
virtue of Theorem 5, we know that

sp(pi; {kn}∞n=1) = sp(pi; {kn}∞n=1) = lim
n→∞

sp(pi; [sn, sn+1]),

in which the convergence of the limit is reassured in Figure 8. Then, consistent
with Theorem 4, the ratios sp(a; [sn, sn+1]) and sp(b; [sn, sn+1]) of symbols a and b
converge to the corresponding sums of all associated entries in the right eigenvector∑
η∈θ(a) v(η) = v(p1) + v(p2) = 0.1368 and

∑
η∈θ(b) v(η) = v(p3) + v(p4) = 0.8632,

as is seen in Figure 9.
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Figure 8. Spread rates sp(pi; [sn, sn+1]) = sp(pi; [sn, sn+1]) of
the topological 2-spread model defined in (19). The ratios
sp(pi; [sn, sn+1]) are observed to approach v(pi) in the figure.
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Figure 9. Spread rates sp(a; [sn, sn+1]) and sp(b; [sn, sn+1]) of
the topological 2-spread model defined in (19). The ratios
sp(a; [sn, sn+1]) and sp(b; [sn, sn+1]) are observed to approach
v(p1) + v(p2) and v(p3) + v(p4), respectively, in the figure.

5.2. Random models. The experiments in this subsection support Theorem 15
numerically. For the sake of comparison, we consider here a special case of random
2-spread model that is generated by a random 1-spread model. Let A = {a, b}
again be the type set and kn = 2 · blog n + 1c so that sn is specified according to
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(2). Then, we set Q1 = {α1, α2, α3, α4}, where




α1 = (a; a, a, a, b, b),

α2 = (a; a, a, b, b, b),

α3 = (b; a, b, b, b, b),

α4 = (b; b, b, b, b, b, b),

upon which we choose the pattern distribution function f0 : Q(0)
1 ×Q1 → [0, 1] to

be

f0(a, αi) =





0.6, if i = 1;
0.4, if i = 2;
0, otherwise;

f0(b, αi) =





0.5, if i = 3;
0.5, if i = 4;
0, otherwise,

so one derives via direct computation the associated offspring mean matrix

M0 =

[
2.6 0.5
2.4 5.0.

]

and its right eigenvector v0 = [0.1504, 0.8496]T . We note this random 1-spread
model naturally generates a random 2-spread model R that is previously seen as
a byproduct in the induced branching process (Section 3.1.2). More explicitly, we

define Q(0)
2 = Q1 and, following the convention of (1),

(20) Q2 = {(β; γ1, · · · , γσ(1)
β

) : β, γi ∈ Q1, β
(1)
i = γ

(0)
i },

for which a natural pattern distribution function f : Q(0)
2 × Q2 → [0, 1] of the

random 2-spread model R is given by

(21) f(α,α) =

{
f0(α(0),α) ·∏σ(1)

α
i=1 f0((α

(1)
i )(0),α

(1)
i ), if α(0) = α;

0, otherwise;

and the associated offspring mean matrix can be computed to be

M =




1.8 1.2 0.6 0
1.2 0.8 0.4 0
1 1.5 2. 3
1 1.5 2. 3




and v = [0.0902, 0.0602, 0.4248, 0.4248]T is the associated eigenvector. If we apply
Theorem 17 with r = 2, then almost surely

lim
n→∞

Oαi(ταj |∆sn+1
sn (ταj )

)
∣∣∆sn+1−r

sn (ταj )
∣∣ =

∑

αi∈θ1(αj)

v(αi) = v(αj).

This agrees with the numerical simulation plotted in Figure 10 for the case j = 1,
in which each marked point is taken to be the average over 30 realizations. On the
other hand, Theorem 15 asserts that almost surely

lim
n→∞

Oa(τα1
|
∆
sn+1
sn (τα1

)
)

∣∣∆sn+1−r
sn (τα1

)
∣∣ =

∑

αi∈θ1(a)

v(αi) = v(α1) + v(α2)

and

lim
n→∞

Ob(τα1
|
∆
sn+1
sn (τα1

)
)

∣∣∆sn+1−r
sn (τα1

)
∣∣ =

∑

αi∈θ1(b)

v(αi) = v(α3) + v(α4).
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Figure 10. Spread rates Oαi(τα1
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∆
sn+1
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)/
∣∣∆sn+1−r

sn (τα1
)
∣∣ of

the topological 2-spread model defined by (20) and (21). The sim-
ulation begins with root α1 and each data point is taken to be the
average over 30 realizations. The ratios are observed to approach
v(αi) in the figure.

This is captured in Figure 11, in which each marked point is again taken to be the
average over 30 realizations. Furthermore, this is also consistent with Theorem 17
with r = 1 by noting that v(α1) +v(α2) = v0(a) and that v(α3) +v(α4) = v0(b).

5.3. Relations between topological and random models. Let A = {a, b},
p1,p2,p3,p4 be as defined in (19), and p′1 = (α1;α1, α2, α3). We define topological
2-spread models

(22) S = {p1, p2, p3, p4} and S = {p′1, p2, p3, p4}
as well as the transition model SR(x1, x2, x3, x4). In fact, the transition model is,
by definition, a model depending only on x1. Thus, according to Proposition 24, the
corresponding spectral radius ρ(x1, x2, x3, x4) = ρ(x1) is continuous with respect
to x1. This is observed in Figure 12.

6. Conclusion

When a pandemic persists for a prolonged period, the spread of the infectious
disease becomes increasingly complicated. From many research reports, it is clear
that once a person is infected, he or she may become another source of infection,
even during the incubation and recovery periods. To describe this phenomenon, we
propose two mathematical models from the topological and random perspectives
by means of substitution dynamical systems and the theory of branching processes.
In both proposed models, the type structure of the current generation or at the
current time depends not only on the type structures of the previous generation
but also on the type structures of the past m generations. Therefore, they are called
the topological and random m-spread model, respectively.

In this work, we construct a corresponding induced system and induced branch-
ing process for the m-spread model, apply the classical results from substitution



THE m-ORDER SPREAD MODELS 35

100 101
0

0.2

0.4

0.6

0.8

1

sn

s α
(·;

[s
n
,s

n
+
1
])

Spread rates of symbols for a random model

sα(p1; [sn, sn+1])

sα(p2; [sn, sn+1])∑
η∈θ(a) v(η)∑
η∈θ(b) v(η)

Figure 11. Spread rates Oa(τα1
|
∆
sn+1
sn (τα1 )

)/
∣∣∆sn+1−r

sn (τα1
)
∣∣ and

Ob(τα1 |∆sn+1
sn (τα1

)
)/
∣∣∆sn+1−r

sn (τα1)
∣∣ of the topological 2-spread

model defined by (20) and (21). The simulation begins with root
α1 and each data point is taken to be the average over 30 real-
izations. The two aforementioned ratios are observed to approach
v(a) = v(α1) + v(α2) and v(a) = v(α3) + v(α4), respectively, in
the figure.

1
4.8

4.85

4.9

4.95

5

x1

ρ

Spectral radius ρ of a transition model

Figure 12. Spectral radius ρ(x1, x2, x3, x4) of the transition
model defined by (22). The continuous of the function is observed
in the figure.

dynamical systems and the theory of branching processes, and use their matrix rep-
resentations to established a computable method to predict the long-term spread
rate of a type (or a symbol) as well as a pattern within some given range of gener-
ations. As an application, we also draw a comparison between two spread models
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with different initial spread patterns. Moreover, the connection between the topo-
logical m-spread model and the random m-spread model is analyzed and some
numerical results are provided at the end of this paper.
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