
MATHEMATICAL ANALYSIS OF SPREAD MODELS: FROM
THE VIEWPOINTS OF DETERMINISTIC AND RANDOM

CASES

JUNG-CHAO BAN, CHIH-HUNG CHANG, JYY-I HONG, AND YU-LIANG WU

Abstract. This paper models the spread of the pandemic with mathe-
matical analysis to provide predictions for different classes of individu-
als. We consider the spread by using a branching process and a substitu-
tion dynamical system as random and deterministic models, respectively,
to approximate the pandemic outbreak. Both approaches are based on the
assumption of Markov processing. The deterministic model provides an
explicit estimate for the proportion of individuals of a certain type in
the particular generation given any initial condition, where a generation
means a unit of observation time. The proportion relates to the matrix
derived from the Markov setting. In addition, the methodology reveals
the efficiency of epidemic control policies, such as vaccine injections
or quarantine, by the relative spread rate that is used for the prediction
of the number of individuals of a certain type. On the other hand, the
stochastic approximation has more of an empirical impact than the de-
terministic one does. Our investigation explicitly exhibits the spread rate
of a certain type with respect to an initial condition of any type. After es-
timating the average spread rate, the effect of adopting a particular policy
can be evaluated. The novelty of this elucidation lies in connecting these
two models and introducing the idea of the transition spread model be-
tween two topological spread models to capture the change of the spread
patterns, which is a real-world phenomenon during the epidemic periods
due to changes in the environment or changes in disease control policies.
Roughly speaking, the deterministic model is a special case of the sto-
chastic model under some particular probability. Most importantly, with
the help of the stochastic model, we establish the transition processing
of two deterministic models, which is called a transition model. In other
words, any stochastic model is “bounded” by two deterministic models.
Moreover, a computable way has been established to predict the long-
term spread rate due to the Markov properties of the models and matrix
representations for the spread patterns.

1. Introduction

Periodically, throughout human history, pandemics have spread widely
and rapidly all over the world. A contemporary case in point is the coro-
navirus (COVID-19) outbreak that began in late 2019. To minimize the
impact caused by these diseases, developing a mathematical model based
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on real data as a criterion for making informed decisions about preventive
initiatives is essential. Among the most frequently investigated mathemat-
ical models of epidemics such as COVID-19 is the susceptible-infected-
recovered (SIR) model (or similar variants, like SIS and SIRS), calibrated
by using flu data and severe acute respiratory syndrome (SARS) data [4, 9,
16, 19, 23]. The investigation focuses on the reproduction number which
illustrates whether the epidemic will eventually die out. In other words, this
is a long-term prediction of a chaotic system [6, 8, 15, 18].

Instead of focusing on whether the pandemic will die out, short-term
prediction of the scope and extent of the pandemic outbreak is also of inter-
est. Some frequently used methodologies are support vector machine, deep
learning (such as convolutional neural networks together with long short-
term memory), intrinsic mode function, etc. See [1, 5] and the references
therein. With the systemic identification of real data, it is possible to predict
the spread rate of the pandemic, the probability of individuals becoming
infected, and other applications germane to various fields (cf. [2, 7, 13]).
Short-term prediction usually depends on how much data can be collected
and is therefore difficult to carry out globally. We are interested in develop-
ing a model that illustrates the dynamical behavior characterizing the wide
spreading of COVID-19 disease around the globe. In other words, we intend
to propose a model that captures short-term behavior and is also capable of
revealing global tendencies at the same time. For this purpose, beyond the
examination of deterministic models, a random system is also significant
due to the uncertainty of the transmission of the virus between objects in
the real world. Investigating the epidemic spread via two models is the
main contribution of this work. Such a discussion reveals the studied sub-
jects in various aspects; thus, it can provide more accurate decision-making
(cf. [12, 20] for instance). Despite demonstrating the relation between our
two proposed models, we also introduce the transition spread model be-
tween two topological spread models to capture the change of the spread
patterns, which is a real-world phenomenon during the epidemic periods
due to changes in the environment or changes in disease control policies.
Another innovation is that a computable way has been established to pre-
dict the long-term spread rate due to the Markov properties of the models
and matrix representations for the spread patterns.

In this paper, we use a branching process and a substitution dynamical
system to model the pandemic’s spread, where the spread of disease is as-
sumed to satisfy a Markov process, and thus has a tree structure, as illus-
trated in Figure 1. More specifically, we divide the objectives into several
categories such as those who are capable of spreading the disease, indi-
viduals who have received vaccines, mask wearers who also practice social
distancing to lower the risk of transmission/infection, etc., and use a Galton-
Watson branching process (as our random system) and a substitution sys-
tem (as our deterministic system) to simulate how the virus is disseminated.
Based on the assumption of the spread following a Markov process, we are
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able to predict the ratio of the spreading speed. We divide the statuses of in-
dividuals during the process of the virus spreading into several classes, such
as severely ill, asymptomatic, quarantined, etc. Each individual of the same
type could affect his/her surroundings within a fixed time interval by the
same pattern. The proposed deterministic model provides an explicit esti-
mate for the proportion of individuals of each type in an arbitrary generation
given any initial condition, where a generation represents a unit time. Since
the proposed model satisfies Markov processing, the aforementioned pro-
portion can be determined from the matrix obtained by the impact of each
type of individual. In addition, our methodology reveals the efficiency of
epidemic control policies such as vaccination and quarantine, by the relative
spread rate that is used for the prediction of the number of individuals of a
certain type. On the other hand, the proposed stochastic model in this paper
might be more empirically impactful than the deterministic one, in some
ways. Our investigation explicitly demonstrates the spread rate of each type
of individual with respect to initial conditions of any type. After estimat-
ing the average spread rate, the effect of adopting a particular policy can
be evaluated. The novelty of this elucidation lies in connecting these two
models. Roughly speaking, the deterministic model is a special case of the
stochastic model under some particular probability. Most importantly, with
the help of the stochastic model, we establish the transition process of two
deterministic models, which is referred to as a transition model. In other
words, any stochastic model is “bounded” by two deterministic models. It
is worth emphasizing that, once the initial distribution of different types of
population and the spread pattern of each type are given, both proposed
models can start the simulation simultaneously. Moreover, it is possible to
make a hybrid model out of our proposed models to fit real data. Notably,
the proposed methodology can be applied to the further study of epidemic
models or to ecological systems.

The upcoming sections are devoted to the presentation of our spread
model. After unveiling the notations, Section 2 introduces the deterministic
and stochastic systems of a Markov process spread model. The determinis-
tic model can be realized as a substitution system. We consider the Galton-
Watson branching process as a random system describing the spreading of
the disease. The main results and discussion are presented in Section 3. To
investigate the spread rate, we can estimate the distribution of a population
through the spectral radius of the corresponding mean matrix. We also re-
veal that the topological spread model is almost surely a particular case of
a random spread model by assigning a proper probability distribution to it.
Section 4 consists of numerical experiments for the approval of our main
theorems. We show that the transition from one random spread model to
the other is continuous and monotonic concerning the spread ratio. Conclu-
sions are in Section 5.
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Figure 1. An illustration of the spread model; each color
represents a particular type of an individual such as severely
ill, mildly ill, asymptomatic, during the spreading process.

2. Materials andMethods

Throughout this paper, we adopt the following notations.
• |S | denotes the cardinality of the set S .
• S k ≡ {(s1s2 . . . sk) : si ∈ S ,∀1 ≤ i ≤ k} for any set S .
• S ∗ ≡ ∪k≥1S k for any set S .
• N0 is the set of all nonnegative integers.
• 0 = (00 . . . 0) and 1 = (11 . . . 1) in Nk

0
• ei = (0 . . . 010 . . . 0) ∈ Nk

0 with the 1 in the ith component.
• Let u = [ui] = (u1u2 . . . uk) and v = [vi] = (v1v2 . . . vk) be k-vectors

with ui, vi ∈ R, i = 1, 2, · · · , k. Then u ≤ v means ui ≤ vi for
i = 1, 2, · · · , k while u < v means ui ≤ vi for all i and ui < vi for at
least one i.
• The absolute value of the vector x = [xi] is

|x| = |x1| + |x2| + · · · + |xk|

• The sup norm of the vector x = [xi] is

‖x‖ = max{|x1|, |x2|, · · · , |xk|}

• For a vector x = [xi] and a y = [yi] in Nk
0,

xy =

k∏
i=1

xyi
i

• For a matrix M = [mi, j], the sup norm is

‖M‖ = max{|mi, j| : i, j = 1, 2, · · · , k}

The general settings for modelling of the evolution or spreading pro-
cesses are described as below. It should be noted that we consider those
who are infected by a person to be the children of said person. Let A =

{a1, a2, · · · , ak} be the type set, which is a set of types indicating the status
of each individual during the spreading process, e.g., severely ill, mildly ill,
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or asymptomatic. Suppose the population is initiated with one individual of
type α = α(0) = ai ∈ A, and α(1)

j is the type of the jth child of this initial
individual, j = 1, 2, · · · , d(1)

α , where d(1)
α is the number of children of this

initial ancestor of type α (= ai). Define

p(1)
α = (α(0);α(1)

1 · · ·α
(1)
d(1)
α

),

which is called a pattern of the 1st generation, and an illustration of which
is provided in Figure 2. A pattern p(1)

α depicts how an individual could af-
fect the surroundings within a fixed interval of time, e.g., (a1; a1a1a2a2a2a3)
means an individual of type a1 will add to the environment two individuals
of type a1, three of type a2, and one of type a3 within some prescribed time
interval. In addition, we denote the offspring type chart of α in the first
generation by

Π(p(1)
α ) = α(1)

1 · · ·α
(1)
d(1)
α

Next, we replace each α(1)
j in p(1)

α by Π(p(1)
α(1)

j

), j = 1, 2, · · · , d(1)
α to obtain

the pattern of the 2nd generation, i.e.,

p(2)
α ≡

(
α; Π(p(1)

α(1)
1

)Π(p(1)
α(1)

2

) · · ·Π(p(1)
α(1)

d(1)
α

)
)

=
(
α(0);α(2)

1 · · ·α
(2)
d(2)
α

)
,

where d(2)
α is the total number of offspring in the 2nd generation, and the pro-

cess is illustrated in Figure 2. In this manner, once p(n−1)
α = (α;α(n−1)

1 · · ·α(n−1)
d(n−1)
α

)
is defined, we denote the offspring type chart of α in the (n−1)th generation
by

Π(p(n−1)
α ) = α(n−1)

1 · · ·α(n−1)
d(n−1)
α

.

Then, we replace offspring of type α(n−1)
j in p(n−1)

α with Π(p(1)
α(n−1)

j

), j = 1, 2, · · · , d(n−1)
α

to obtain p(n)
α , the pattern of the nth generation and so on. According to the

above definition, p(n)
α denotes the outcome of the spreading process after n

generations with respect to an initial individual of type α, and this model
of spreading has a tree structure intrinsically. For any β ∈ A, denote by∣∣∣∣Π(p(n)

α )
∣∣∣∣
β

the number j, j = 1, 2, · · · , d(n)
α such that α(n)

j = β.

2.1. Topological Model. This section deals with the deterministic spread-
ing process. In this case, each element ai in the type setA = {a1, a2, . . . , ak}

is associated with a pattern p(1)
ai , for which {p(1)

ai }
k
i=1 is called a topological

spread model. For a topological spread model, the letters

d ≡ min
α∈A

d(1)
α(1)

D ≡ max
α∈A

d(1)
α(2)

are exclusively reserved for these usages. For any topological spread model
{p(1)

ai }
k
i=1, the topological spread rate of β with respect to the root α is defined
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Figure 2. Generation of a pattern of length 2 from a pattern
of length 1.

as:

sα(β) = lim
n→∞

s(n)
α (β),

where s(n)
α (β) =

∣∣∣∣Π(p(n)
α )

∣∣∣∣
β

d(n)
α

is called the n-spread rate of β with respect to the
root α, which indicates the proportion of type-β offspring in the nth gener-
ation with respect to the initial ancestor α.

For a topological spread model {p(1)
ai }

k
i=1, a substitution ζ on A to A∗ is

defined as

ζ(α) = Π(pα) for α ∈ A

with length |ζ(α)| = d(1)
α . This substitution induces a morphism of the

monoid A∗ by putting ζ(B) = ζ(b0)ζ(b1) · · · ζ(bn) if B = b0 · · · bn ∈ A
∗

and ζ(B) = ∅ if B = ∅. By denoting ζn = ζ ◦ ζn−1 the n-time iterated map
of ζ, it is evident from the construction of p(2)

α that

p(2)
α =

(
α; Π

(
p(1)
α(1)

1

)
· · ·Π

(
p(1)
α(1)

d(1)
α

))
=

(
α; Π(p(2)

α )
)
.
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On the other hand,

ζ2(α) = ζ ◦ ζ(α) = ζ
(
α(1)

1 · · ·α
(1)
d(1)
α

)
= ζ

(
α(1)

1

)
ζ
(
α(1)

2

)
· · · ζ

(
α(1)

d(1)
α

)
= Π

(
p(1)
α(1)

1

)
Π
(
p(1)
α(1)

2

)
· · ·Π

(
p(1)
α(1)

d(1)
α

)
= Π(p(2)

α ).

Inductively, we have ζn(α) = Π(p(n)
α ) for n ≥ 1 and therefore the following

proposition holds.

Proposition 2.1. Let {p(1)
α }α∈A be a spread model and ζ be the associated

substitution. Then for n ∈ N, the sets {Π(p(n)
α )}α∈A and {ζn(α)}α∈A are one-

to-one corresponding.

For the purpose of studying the spread rate sα(β) and the n-spread rate
s(n)
α (β) for all α, β ∈ A, two additional assumptions are made through-

out this section for practical reasons. Firstly, for any ancestor α ∈ A,
limn→∞ |ζ

n(α)| = +∞ for all α ∈ A, i.e., the number of offspring is un-
bounded in an infinite interval of time. Secondly, for every α0 ∈ A there
exists ζ(α0) beginning with α0. In fact, [21, Proposition 5.1] shows that if
limn→∞ |ζ

n(α)| = +∞, then there is an equivalent substitution such that this
second assumption is satisfied. For a detailed discussion of the spread rate,
let B,C be two patterns in A∗, and let OC(B) denote the number of occur-
rences of C in B. In particular, if α ∈ A, the number Oα(B) is the number
of letter α occurring in the pattern B, which forms the (i, j)-th entry of the
associated ζ-matrix M = Mζ , which is a k × k matrix defined by

M = [mi, j] ≡ [Oai(ζ(a j))].

Given a k × k matrix A = [ai, j], we denote by ρA the spectral radius of the
matrix A. Below are some facts from matrix analysis [11]. A substitution ζ
is said to be irreducible on A if for every pair α, β ∈ A, one can find ` =

`(α, β) such that β occurs in ζ`(α). A substitution ζ is said to be primitive
if there exists ` such that, for every α, β ∈ A, β occurs in ζ`(α). Recall
that a nonnegative k × k matrix M = [mi, j] is said to be irreducible if, for
every i, j, there exists ` ≥ 1 such that m[`]

i j > 0, denoted by M` = [m[`]
i j ].

M is said to be primitive if M` is positive for some ` ≥ 1 (i.e., m[`]
i j > 0

for all 1 ≤ i, j ≤ k). Note that ζ is primitive (resp. irreducible) if and only
if Mζ is primitive (resp. irreducible) matrix. It is worth pointing out that
under the two assumptions mentioned above, primitivity and irreducibility
of a substitution ζ are equivalent properties [21, Proposition 5.5]. In what
follows, we always assume ζ is irreducible, and thus the associated ζ-matrix
is irreducible, and also primitive.

Proposition 2.2. Let A = [ai, j] be a k × k nonnegative matrix written as
Am = [a[m]

i, j ].
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(i) We have

(3) min
1≤i≤n

n∑
j=1

ai j ≤ ρA ≤ max
1≤i≤n

n∑
j=1

ai j.

(ii) If A is a primitive integral matrix, then

(4) lim
n→∞

1
n

log a(n)
i j = log ρA.

(iii) If A has a positive eigenvector x = [xi], then for all m ≥ 1 and for
all i = 1, . . . , n, we have

(5)
(

min1≤ j≤k xk

max1≤ j≤k xk

)
ρm

A ≤

k∑
j=1

a[m]
i j ≤

(
max1≤ j≤k xk

min1≤ j≤k xk

)
ρm

A .

Let x be a positive vector, we denote by

C1(x) =

(
max1≤ j≤k xk

min1≤ j≤k xk

)
and c1(x) =

(
min1≤ j≤k xk

max1≤ j≤k xk

)
.

2.2. Random Model. In order to catch the uncertainty of the spread pat-
terns, we introduce a random spread model in this section by means of
branching processes. In this model, P(1)

α becomes a random element repre-
senting all the possible outcome patterns, and its distribution will assign to
each possible pattern a probability of that pattern happening.

To better describe this random spread model, we start with the introduc-
tion of multi-type branching processes in the following.

A k-type Galton-Watson branching process is a mathematical model used
to describe the evolution of a population consisting of individuals of k dif-
ferent types, say types a1, a2, · · · , ak.

We assume that each individual of type ai, i = 1, 2, · · · , k, lives a unit of
time and, upon death, produces children of all types according to the off-
spring distribution

{
P(i)(j) ≡ P(i)( j1 j2 · · · jk)

}
j∈Nk

0
and independently of other

individuals, where P(i)( j1 j2 · · · jk) is the probability that a type ai parent pro-
duces j1 children of type a1, j2 children of type a2, · · · , jk children of type
ak. Let Zn = (Zn,1Zn,2 · · · Zn,k) be the population vector in the nth generation,
n = 0, 1, 2, · · · , where Zn,i is the number of individuals of type ai in the nth
generation.

Note that, from Kolmogorov’s consistency theorem, there is a probability
space (Ω,F , P) on which {Zn(ω); n ≥ 0} are defined and have the distribu-
tion determined by the above. In this space Ω, each point represents an
entire “family tree”, i.e., it specifies the generation number, ancestors, and
offspring of each individual (see Athreya and Ney [3]). Different sample
points show different possible realizations, see Figure 3.

Let

f (i)(s1s2 · · · sk) ≡
∑

j1, j2,··· , jk≥0

P(i)( j1 j2 · · · jk)s j1
1 s j2

2 · · · s
jk
k ,(6)
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·
·
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·
·

sample point 1 sample point 2

Figure 3. Two different sample points of a Galton-Watson
branching process.

where 0 ≤ sr ≤ 1, r = 1, 2, · · · , k, be the probability generating function of
the numbers of various types produced by a type ai individual.

Let

f ≡ [ f (i)] ≡ ( f (1) f (2) · · · f (k))(7)

be the vector of the generating functions.
Thus, a discrete-time k-type Galton-Watson branching process

{
Zn

}
n≥0 is

a Markov chain on Nk
0 with the transition function

P(i, j) = P(Zn+1 = j|Zn = i) ∀i, j ∈ Nk
0(8)

such that, for any i,
∑
j∈Nk

0

P(i, j)sj =
(
f(s)

)i
(see notation (8)).

In particular, if the process is initiated in state ei, i.e., there is only one
initial ancestor in the 0th generation and this initial ancestor is of type ai,
then we will denote the process {Zn}n≥0 by

Z(i)
n =

(
Z(i)

n,1Z(i)
n,2 · · · Z

(i)
n,k

)
where, for j = 1, 2, · · · , k, Z(i)

n, j is the number of type j individuals in the nth
generation for a process with Z0 = ei. The probability generating function
of Z(i)

n will be denoted by f(i)
n (s).

Also, if we let ξ( j)
n,r be the vector of offspring of the rth individual of type

a j in the nth generation then, for all r and n, P(ξ( j)
n,r = ·) = P( j)(·). Thus, the

population in the (n + 1)th generation can be expressed as

Zn+1 =

k∑
j=1

Zn, j∑
r=1

ξ( j)
n,r.(9)

which is a useful stochastic evolution relation.
We are ready to construct a random spread model using the idea of a

k-type Galton-Watson branching process. Based on the setting in Section
2, for a pattern p(1)

α = (α(0);α(1)
1 · · ·α

(1)
d(1)
α

) the number of the children of the
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ancestor α is d(1)
α = |ξ(i)

0,1| = |Z
(i)
1 |, and p(1)

α is called a random pattern of the
1st generation to emphasize that it follows from a probability distribution,
in contrast to the deterministic topological spread model. Note that this
defines a random spread model, which is completely determined by the
offspring distributions {

P(i)(·)
}k

i=1

of the k-type Galton-Watson branching process {Zn}n≥0 ≡ {(Zn,1Zn,2 · · · Zn,k)}n≥0,
and the random spread model {p(1)

ai }
k
i=1 is called a random spread model with

spread distribution {P(i)(·)}ki=1 and {Zn}n≥0 is called the underlying branching
process of this random spread model.

For n ∈ N and p(n)
α , a pattern of the nth generation, the offspring type

chart of α in n generations is

Π(p(n)
α ) = (α(n)

1 · · ·α
(n)
d(n)
α

) ∈ Ad(n)
α .

It is clear that, if α = ai and β = a j, i, j = 1, 2, · · · , k, then∣∣∣∣Π(p(n)
α )

∣∣∣∣
β

= Z(i)
n, j.

Here, we want to note that both P(1)
α and Π(P(1)

α ) are random elements which
provide information about the number of children and the types of all the
children of a parent of type α.

When a random spread model {p(1)
ai }

k
i=1 with spread distribution {P(i)(·)}ki=1

is given, a natural question that arises is, if a disease has been spreading in
some area, what happens to the infection rate in the long run?

Following from Section 2, the n-spread rate of type a j with respect to an
initial ancestor of type ai is defined as

s(n)
ai

(a j) =

∣∣∣∏(p(n)
ai )

∣∣∣
a j

d(n)
ai

=
Z(i)

n, j

|Z(i)
n |

where {Zn}n≥0 ≡ {(Zn,1Zn,2 · · · Zn,k)}n≥0 is the branching process with off-
spring distribution {P(i)(·)}ki=1. Moreover, what happens to the limit behavior
of s(n)

ai (a j) as n→ ∞? If the limit exists in some sense, then we denote it by
sai(a j) and here we call it the random spread rate of a j with respect to an
initial ancestor of type ai.

3. Results and Discussion

3.1. Topological Model. By virtue of the proposition above, the asymp-
totic behavior of the spread rate is understood in the way of the following
theorem and proposition.

Theorem 3.1 (Spread rate and n-spread rate). Let {p(1)
ai }

k
i=1 be a spread

model, and ζ be the associated substitution with the ζ-matrix M. Sup-
pose ρ = ρM is the spectral radius of M, with positive eigenvector v =

(va1va2 . . . vak). Then
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(i) Let ai ∈ A. Then, the vector
(
sai(a j)

)
a j∈A

is independent of ai and(
sai(a j)

)
a j∈A

= v, i.e.,

lim
n→∞

∣∣∣Π(p(n)
ai )

∣∣∣
a j

d(n)
ai

= lim
n→∞

Oa j(ζ
n(ai))

|ζn(ai)|
= va j .

In addition, the speed of convergence is geometric.
(ii) c1(v)ρm ≤

∑
a j∈A

s(n)
ai (a j) ≤ C2(v)ρm.

Proof. See Appendix A.1. �

Theorem 3.2. Suppose {p(1)
ai }

k
i=1 and {p(1)′

ai }
k
i=1 are two spread models with

d,D and d′,D′ being the corresponding minimal and maximal numbers of
children of the spread models as defined in (1) and (2), respectively. Let
s(n)
α (β) and s(n)′

α (β) be the n-spread rate of {p(1)
ai }

k
i=1 and {p(1)′

ai }
k
i=1, respectively.

Then
(i) If D′ < d, then there exist r < 1, C > 0 such that

(10)

∑
α∈A

∣∣∣Π(p(n)′
α )

∣∣∣
β∑

α∈A

∣∣∣Π(p(n)
α )

∣∣∣
β

≤ Crn,

for all α, β ∈ A and n ∈ N. Here C =
C1(v)
c1(v′) , r =

ρ′

ρ
, where ρ = ρM

and ρ′ = ρM′ .
(ii) If

∣∣∣Π(p(1)′
α )

∣∣∣
β
≤

∣∣∣Π(p(1)
α )

∣∣∣
β

and there exists a pair (γ, δ) such that∣∣∣Π(p(1)′
γ )

∣∣∣
δ
<

∣∣∣Π(p(1)
γ )

∣∣∣
δ
, then there exist r < 1, C > 0 and N ∈ N

such that

(11)

∣∣∣Π(p(n)′
α )

∣∣∣
β∣∣∣Π(p(n)

α )
∣∣∣
β

≤ Crn

for all α, β ∈ A and n ≥ N.

Proof. See Appendix A.2. �

Remark 3.3. The above-described theorems reveal the following.
• The limit of the n-spread rate sai(a j) of the type a j exists and is the

jth component va j of the right eigenvector v of M (Theorem 3.1).
Moreover, it is independent of ai, i.e., the type of the initial ancestor.
• For a fixed topological spread model, Theorem 3.1 provides an ex-

plicit estimate for the proportion of individuals of type β in the nth
generation given any initial ancestor α. Such a proportion can be
determined from the ζ-matrix.
• Suppose in the spread model {p(1)

ai }
k
i=1 is overall more active than

{p(1)′
ai }

k
i=1 in the sense D′ < d, then Theorem 3.2 (i) asserts that the

relative number of descendants of the latter model to the former
model is geometrically decreasing. If, in addition {p(1)

ai }
k
i=1 is a more

active spread model than {p(1)′
ai }i=1 in each type of children for every
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parent, then Theorem 3.2 (ii) shows that the relative number of de-
scendants of type β with respect to the ancestor α also decreases ge-
ometrically. These two properties explain the exponential decay in
the relative number of infected individuals when essential measures
are taken, such as wearing masks or maintaining social distance.

3.2. Random Model. One way to understand the behavior of a random
variable is to investigate its mean (i.e., expectation, average). Therefore, to
answer the above questions, we first compute the mean matrix.

For a random spread model {p(1)
ai }

k
i=1 with spread distribution {P(i)(·)}ki=1

and the underlying branching process {Zn}n≥0, let

mi, j = E(Z( j)
1,i ) = E

(∣∣∣∏(p(1)
a j )

∣∣∣
ai

)
and

m(n)
i, j = E(Z( j)

n,i ) = E
(∣∣∣∏(p(n)

a j )
∣∣∣
ai

)
be the means (averages) of the number of individuals of type ai in the 1st
and nth generations, respectively, as the spread starts with on individual of
type a j. That is, an individual of type a j will have, on average, m(n)

i j offspring
of type ai in the nth generation. Then, the matrix

M ≡ [mi, j]k×k

is called the offspring mean matrix of the branching process {Zn}n≥0, and
M(n) ≡ [m(n)

i, j ]k×k is called the offspring mean matrix in n generations. By
induction, we can prove the following proposition.

Proposition 3.4. For any n ∈ N, M(n) = Mn, where M(1) ≡ M.

We assume that 0 ≤ mi, j < ∞, for all i, j = 1, 2, · · · , k so that the offspring
mean matrix M exists and define the following:

• A random spread model {p(1)
ai }

k
i=1 is said to be positive regular, if

M is strictly positive, i.e., there is an no such that m(n0)
i, j > 0 for all

i, j = 1, 2, · · · k.
• A random spread model {p(1)

ai }
k
i=1 is said to be singular, if for every

i = 1, 2, · · · , k, there is a unit vector e j ∈ N
k
0 such that P(i)(e j) = 1.

Proposition 3.5. Let {p(1)
ai }

k
i=1 be a positive regular and nonsingular random

spread model. Then, for every i = 1, 2, · · · , k,

d(n)
ai → 0 or d(n)

ai → ∞ as n→ ∞

with probability 1.

The above proposition is known as the Frobenius Theorem and it tells us
that in a multi-type branching process, no matter what type the initial ances-
tor is of, when the population doesn’t go extinct, the number of descendants
tends to infinity as the time goes to infinity. This property satisfies one of
the assumptions for the topological spread model, i.e., limn→∞ |ζ

n(α)| = +∞

for all α ∈ A. For a proof of this proposition, see sections II.6 and II.7 in
[10].
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Proposition 3.6. Let {p(1)
ai }

k
i=1 be a positive regular and nonsingular random

spread model, then there is a ρ > 0 such that ρ is an eigenvalue of the
offspring mean matrix M with both algebraic and geometric multiplicity
one and |λ| < ρ for any other eigenvalue λ of M.

The readers may refer to [14, Appendix 2, Page 542] for more details
about Proposition 3.6.

From now on, we assume that the spectral radius ρM of the offspring mean
matrix M for the random spread model is greater than 1. This assumption
ensures that the population has a chance to survive, i.e. d(n)

ai → ∞ for some
i.

Theorem 3.7. (Average spread rate and average n-spread rate). Let {p(1)
ai }

k
i=1

be a positive regular and nonsingular random spread model. Let ρ = ρM be
the maximal eigenvalue of M and let u = [ui] and v = [vi] be the left and
right eigenvector of M associated with ρ such that v · 1 = 1 and u · v = 1.
Then,

(i) for any i, j = 1, 2, · · · , k,

lim
n→∞

m(n)
i, j

ρn = viu j.

(ii) For every i = 1, 2, · · · , k, there exists a random variable Wi such
that for every j = 1, 2, · · · , k,

lim
n→∞

∣∣∣∏(p(n)
ai )

∣∣∣
a j

ρn = u jWi

with probability 1.
(iii) For any i = 1, 2, · · · , k, on the event of nonextinction, i.e., on the

event {d(n)
ai → ∞},

sai(a j) ≡ lim
n→∞

s(n)
ai

(a j) = lim
n→∞

∣∣∣∏(p(n)
ai )

∣∣∣
a j

d(n)
ai

= v j

with probability 1.

Proof. It follows from Theorem 1 on Page 192 in [3]. �

Remark 3.8. The above theorem tells us the following:
• The average growth rate of the spread is geometric.
• The number of individuals of type a j in the nth generation grows

like ρn and is proportional to the jth component of the left eigenvec-
tor u of the offspring mean matrix M associated with the maximal
eigenvalue ρ.
• The limit of the n-spread rate sai(a j) of the type a j exists and is the

jth component v j of the right eigenvector v of M which is indepen-
dent of ai, the type of the initial ancestor.
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Now, as defined in (1) and (2), we have

D = max
α∈A

E(d(1)
α ) = max

1≤i≤k
E|Z(i)

1 | = max
1≤i≤k

E
(∑k

j=1 Z(i)
1, j

)
= max

1≤i≤k

∑k
j=1 m j,i

and

d = min
α∈A

E(d(1)
α ) = min

1≤i≤k
E|Z(i)

1 | = min
1≤i≤k

E
(∑k

j=1 Z(i)
1, j

)
= min

1≤i≤k

∑k
j=1 m j,i

as the maximal and minimal column sums of the offspring mean matrix M.
For a random phenomenon, it is difficult to predict exactly which out-

come among many possible ones will happen, even though its probability
distribution is known. In this case, the average (expectation, mean) is often
a good estimate for it. The next theorem provides a strategy to compare two
random spread models in an average sense.

Theorem 3.9. Suppose {p(1)
ai }

k
i=1 and {p(1)′

ai }
k
i=1 are two positive regular and

nonsingular random spread models with n-spread rates s(n)
α (β) and s(n)′

α (β),
respectively.

(i) If D′ < d, then there exist r < 1, C > 0 such that

E
(∑

α∈A

∣∣∣∏(p(n)′
α )

∣∣∣
β

)
E
(∑

α∈A

∣∣∣∏(p(n)
α )

∣∣∣
β

) ≤ Crn

for all α, β ∈ A and for all n ∈ N. Here, C =
C1(v)
c1(v′) , where

C1(v) =

(max1≤i≤k vi

min1≤i≤k vi

)
and c1(v) =

( min1≤i≤k vi

max1≤i≤k vi

)
,

and r =
ρ′

ρ
, where ρ = ρM and ρ′ = ρM′ are the Perron-Frobenius

eigenvalues of the offspring mean matrices M and M′ for the models
{p(1)

ai }
k
i=1 and {p(1)′

ai }
k
i=1, respectively.

(ii) If m′i, j ≤ mi, j for all i, j = 1, 2, · · · , k and there exists a pair (i0, j0)
such that m′i0, j0 < mi0, j0 , then there exist r < 1 and C > 0 and N ∈ N
such that

E
(∣∣∣∏(p(n)′

α )
∣∣∣
β

)
E
(∣∣∣∏(p(n)

α )
∣∣∣
β

) ≤ Crn

for all α, β ∈ A and for all n ≥ N.

Proof. After taking the expectation on the random variables, the proofs in
the deterministic case can be applied to prove the results for the random
spread models. �

3.3. Connection between the Topological Spread Model and Random
Spread Model. This subsection is devoted to the discussion of the rela-
tion between random spread models and topological spread models. Since
a topological spread model is defined by deterministic patterns of the 1st
generation, the following proposition follows naturally.
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0 x 1≤ ≤

initial (topological) spread model transition model terminal (topological) spread model{
p
(1)′
ai

} {
p
(1)T
ai

} {
p
(1)
ai

}

with probability

1− xi

with probability

xi

Figure 4. An illustration of a transition model.

The next proposition tells us that every topological spread model is al-
most surely a special case of a random spread model by assigning a proper
probability distribution to it.

Proposition 3.10. Let {p(1)
ai }

k
i=1 be a random spread model with spread dis-

tribution {P(i)(·)}ki=1. If, for every i = 1, 2, · · · , k, there is a vector j(i) ∈ Nk
0

such that P(i)(j(i)) = 1, then {p(1)
ai }

k
i=1 is a topological spread model with

probability 1.

Proof. See Appendix A.3. �

One essential part of the work involved in disease control is to develop a
strategy to change the spread pattern to reduce the number of infected cases
or the infection rate. During an effective control process, we often can see
the spread pattern is gradually changed to another pattern. To represent
what happens in this transition phase, we now introduce a special type of
random spread model. Given two topological spread models {p(1)

ai }
k
i=1 and

{p(1)′
ai }

k
i=1, a random spread model, denoted by {p(1)T

ai }
k
i=1, is called a transition

model to the terminal model {p(1)
ai }

k
i=1 from the initial model {p(1)′

ai }
k
i=1, if there

exists a vector 0 ≤ x = (x1x2 · · · xk) ≤ 1 such that, for each i = 1, 2, · · · , k,

P(i)
(∣∣∣∏(p(1)

ai
)
∣∣∣
a1
,
∣∣∣∏(p(1)

ai
)
∣∣∣
a2
, · · · ,

∣∣∣∏(p(1)
ai

)
∣∣∣
ak

)
= xi

and

P(i)
(∣∣∣∏(p(1)′

ai
)
∣∣∣
a1
,
∣∣∣∏(p(1)′

ai
)
∣∣∣
a2
, · · · ,

∣∣∣∏(p(1)′
ai

)
∣∣∣
ak

)
= 1 − xi

where {P(i)(·)}ki=1 is the underlying spread distribution of {p(1)T
ai }

k
i=1.

Proposition 3.11. If the random spread model {p(1)T
ai }

k
i=1 is a transition model

to the terminal topological spread model {p(1)
ai }

k
i=1 from the initial topologi-

cal spread model {p(1)′
ai }

k
i=1, then

(i) If x = 1, then {p(1)T
ai }

k
i=1 = {p(1)

ai }
k
i=1 with probability 1.

(ii) If x = 0, then {p(1)T
ai }

k
i=1 = {p(1)′

ai }
k
i=1 with probability 1.

Proof. The proof is straightforward by the previous proposition. �
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Now, for any 0 ≤ x = (x1x2 · · · xk) ≤ 1, we let the random spread model
{p(1)T

ai (x)}ki=1 be a transition model to the terminal spread model {p(1)
ai }

k
i=1 from

the initial spread model {p(1)′
ai }

k
i=1 such that

P(i)
x

(∣∣∣∏(p(1)
ai

)
∣∣∣
a1
,
∣∣∣∏(p(1)

ai
)
∣∣∣
a2
, · · · ,

∣∣∣∏(p(1)
ai

)
∣∣∣
a1

)
= xi

and

P(i)
x

(∣∣∣∏(p(1)′
ai

)
∣∣∣
a1
,
∣∣∣∏(p(1)′

ai
)
∣∣∣
a2
, · · · ,

∣∣∣∏(p(1)′
ai

)
∣∣∣
a1

)
= 1 − xi,

where {P(i)
x (·)}ki=1 is the underlying spread distribution of {p(1)T

ai (x)}ki=1.
Furthermore, let M and M′ be the ζ-matrices of the topological spread

models {p(1)
ai }

k
i=1 and {p(1)′

ai }
k
i=1 with the spectral radii (maximal eigenvalues)

ρM and ρM′ , and let MT (x) be the offspring mean matrix of the underlying
branching process {Zn}n≥0 for {p(1)T

ai (x)}ki=1 with the spectral radius ρT (x).
We also call ρM, ρM′ and ρT (x) the terminal, initial and transition spectral
radii, respectively.

Theorem 3.12. Under the sup norm for the matrices and vectors, we have
(i) If x→ 1, then ρT (x)→ ρM.

(ii) If x→ 0, then ρT (x)→ ρM′ .

Proof. See Appendix A.4. �

Remark 3.13. The theorem says that, as the vector x → 1, i.e., the transi-
tion model has a higher and higher chance to perform the pattern in the ter-
minal spread model {P(1)

ai }
k
i=1, the transition spectral radius ρT (x) converges

to the terminal spectral radius ρM of {P(1)
ai }

k
i=1. That is, the average growth

rate of the spread of the transition model tends to the growth rate of the
spread of the terminal model {P(1)

ai }
k
i=1.

Moreover, the proof of the above theorem provided in Appendix A.4 can
be adopted to show the following corollary.

Corollary 3.14. The map x→ ρT (x) is continuous.

4. Numerical Examples

For the topological spread model, the following example provides an es-
timate for both spread rates by means of Theorem 3.1 and Theorem 3.2.

Example 4.1. Let A = {a1, a2, a3} be the type set of a topological spread
model {p(1)

ai }
k
i=1.

(i) If

p(1)
a1

= (a1; a1a1a2a2a3),

p(1)
a2

= (a2; a1a2a2a3a3),

p(1)
a3

= (a3; a2a2a3a3a3),

note that D = d = 5.
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Then the associated substitution ζ is defined as

ζ(a1) = a1a1a2a2a3,

ζ(a2) = a1a2a2a3a3,

ζ(a3) = a2a2a3a3a3.

The ζ-matrix is

M =

2 1 0
2 2 2
1 2 3

 .

One can easily check that ρM = 5, and it follows from Theorem 3.1
that we have sα(a1) = 2

15 ≈ 0.133, sα(a2) = 2
5 = 0.4 and sα(a2) =

7
15 ≈ 0.467.

(ii) If

p(1)′
a1

= (a1; a1a1a2a2),

p(1)′
a2

= (a2; a1a2a3a3),

p(1)′
a3

= (a3; a2a3a3a3),

note that D′ = d′ = 4. The associated ζ′-matrix is

M′ =

2 1 0
2 1 1
0 2 3

 .

Since D′ = 4 < d = 5, Theorem 3.2 is applied to show that∑3
i=1

∣∣∣Π(p(n)′
ai )

∣∣∣
a1∑3

i=1

∣∣∣Π(p(n)
ai )

∣∣∣
a1

≤
C1(v′)
c1(v)

(
4
5

)n = 14(
4
5

)n = 14(0.8)n.

For example,∑3
i=1

∣∣∣Π(p(20)′
ai )

∣∣∣
a1∑3

i=1

∣∣∣Π(p(20)
ai )

∣∣∣
a1

≤ 14 × (
4
5

)20 ≈ 0.16141.

(iii) Since M′ < M, Theorem 3.2 is applied to show that there exists a
C > 0, and N ∈ N such that ∀1 ≤ i, j ≤ 3,∣∣∣Π(p(n)′

ai )
∣∣∣
a j∣∣∣Π(p(n)

ai )
∣∣∣
a j

≤ C(
4
5

)n = C(0.8)n for n ≥ N.

Aside from the topological spread model, the following example demon-
strates the estimation of the spread rate of the random spread model.

Example 4.2. Let {pai}
3
i=1 be a random spread model.

(i) If the random spread model is given as follows:

pa1 =


(a1; a1a1a1a2a2a2a3a3), with probability 1

3
(a1; a1a2a2a3), with probability 1

3
(a1; a1a1a2a2a3), with probability 1

3
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pa2 =


(a2; a1a2a2a2a3), with probability 1

3
(a2; a1a2a3), with probability 1

3
(a2; a2a2a3), with probability 1

3

pa3 =


(a3; a1a1a2a2a3a3), with probability 1

3
(a3; a2a2a3), with probability 1

3
(a3; a1a2a2a3), with probability 1

3

then
m1,1 = 3 · 1

3 + 1 · 1
3 + 2 · 1

3 = 6
3 = 2

m2,1 = 3 · 1
3 + 2 · 1

3 + 2 · 1
3 = 7

3 ,

and, similarly, we can find that

m3,1 = 4
3 ,m1,2 = 2

3 ,m2,2 = 2,m3,2 = 1,m1,3 = 1,m2,3 = 2,m3,3 = 4
3 .

Hence, the offspring mean matrix is

M =

 2 2
3 1

7
3 2 2
4
3 1 4

3

 .
We have the sums of columns 1, 2 and 3, which are 17

3 , 11
3 and 13

3 , so
that D = 17

3 and d = 11
3 . The Perron-Frobenius eigenvalue is

ρM ≈ 4.34848

and the corresponding normalized right eigenvector is

v = (0.25 0.48 0.27).

Therefore, the spread rates are

sai(a1) = 0.25 sai(a2) = 0.48 sai(a3) = 0.27

for all i = 1, 2, 3.
(ii) We consider another random spread model:

p(1)′
a1

=


(a1; a1a1), with probability 1

4
(a1; a1a2), with probability 1

2
(a1; a2a3), with probability 1

4

p(1)′
a2

=


(a2; a1), with probability 1

3
(a2; a2), with probability 1

3
(a2; a3), with probability 1

3

p(1)′
a3

=


(a3; a1a2a3), with probability 1

4
(a3; a2a2a3), with probability 1

2
(a3; a1a2a2a3), with probability 1

4

then m1,1 = 1, m2,1 = 3
4 , m3,1 = 1

4 , m1,2 = 1
3 , m2,2 = 1

3 , m3,2 = 1
3 ,

m1,3 = 1
2 , m2,3 = 7

4 , m3,3 == 1 and hence the offspring mean matrix
is

M′ =

 1 1
3

1
2

3
4

1
3

7
4

1
4

1
3 1

 .
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We have the sums of columns 1, 2 and 3, which are 2, 1 and 13
4 ,

so that D′ = 13
4 < d = 11

3 and d′ = 1. Note that D′ < d. The
Perron-Frobenius eigenvalue is

ρM′ ≈ 1.87991

and the corresponding normalized right eigenvector is

v′ = (0.31 0.44 0.25).

Therefore, the spread rates are

sai(a1) = 0.31 sai(a2) = 0.44 sai(a3) = 0.25

for all i = 1, 2, 3.
Since D′ < d, we have

E
(∑3

i=1

∣∣∣∏(p(n)′
ai )

∣∣∣
a j

)
E
(∑3

i=1

∣∣∣∏(p(n)
ai )

∣∣∣
a j

) ≤
C1(v′)
c1(v)

(ρM′

ρM

)n

≈
0.44/0.25
0.25/0.48

(1.87991
4.34848

)n
≈ 3.38 · (0.43)n.

Moreover, since M′ < M, we also have C > 0 and N ∈ N, such that
for any i, j = 1, 2, 3 and any n ≥ N,

E
(∣∣∣∏(p(n)

ai )
∣∣∣
a j

)
E
(∣∣∣∏(p(n)′

ai )
∣∣∣
a j

) ≤ C(0.43)n.

Remark 4.3. The above two examples demonstrate the process of how we
apply the theorems with numerical data. This leads us to make the following
remarks:

• The first part in both examples shows how we construct the ζ-matrix
for a topological spread model and the offspring mean matrix for a
random spread model once the initial spread patterns are given. As
long as the matrices are constructed, we can compute their spectral
radii (maximal eigenvalues) and the corresponding left- and right-
eigenvectors. Therefore, the (average) spread rates can be deter-
mined.
• In the second part of each example, two different models are com-

pared. With the given initial spread patterns, we first compute (D, d)
and (D′, d′). D and D′ are the maximal column sums of the corre-
sponding ζ- or the offspring mean matrices while d and d′ are the
minimal column sums. D and D′ also mean the maximal (average)
numbers of descendants (or people being infected) of individuals in
the population under the given initial spread patterns. Similarly, d
and d′ represent the minimal (average) numbers of descendants. In
the examples, we have D′ < d and then our theorems tell us that the
relative number of descendants of the model {p(1)′

ai }
k
i=1 to the model



20 JUNG-CHAO BAN, CHIH-HUNG CHANG, JYY-I HONG, AND YU-LIANG WU

{p(1)
ai }

k
i=1 is geometrically decreasing with rate ρM′

ρM
. In addition, to fig-

ure out the ratio of descendants of a certain type initiated by an indi-
vidual of any given type, we can further compare the corresponding
entries in M and M′.

In the following, we give some examples of transition models to exhibit
an interesting phenomenon.

Example 4.4. Let {p(1)T
ai }

2
i=1 be a transition model with the associated vector

x = (x1x2) defined as follows:

p(1)T
a1

=

{
(a1; a1a1a1a2a2), with probability x1

(a1; a1a1a2a2a2), with probability 1 − x1,

p(1)T
a2

=

{
(a2; a1a2a2a2a2a2), with probability x2

(a2; a1a2a2a2a2), with probability 1 − x2.

According to Proposition 3.10 and Proposition 3.11, if (x1x2) is at the
corners (1 1) and (0 0), it defines the terminal and initial topological spread
models, respectively. It should be noted that each choice of the pair (x1x2),
0 ≤ x1, x2 ≤ 1, defines a specific transition model to the terminal topological
model from the initial one. For the transition model, the offspring mean
matrix is

M =

[
2 + x1 1
3 − x1 4 + x2

]
and we can see that the offspring mean matrices with (x1x2) = (0 0) and
(1 1) coincide with the corresponding ζ-matrices for the above two topo-
logical spread models. For example, when x1 = x2 = 0, the offspring
mean matrix coincides with the ζ-matrix of the topological spread model
{(a1; a1a1a2a2a2), (a2; a1a2a2a2a2)}, which is given as

M =

[
2 1
3 4

]
.

In addition to Table 1, the plots of the spectral radii and of the spread rates
for the transition model with various (x1x2) are provided in Figure 5. Not
only is this figure consistent with Table 1, but the spectral radius is con-
tinuous with respect to the vector (x1x2) as a result of Corollary 3.14. In
particular, when (x1x2) tends to 1, the spectral radius ρT (x) tends to ρM as
implied by Theorem 3.12.

On the other hand, due to the continuity of the spectral radius of the
transition model, an inverse problem can be studied and answered. That is,
we are able to find a suitable pair (x1x2) which allows us to construct the
transition model with a designated spectral radius. This idea can be applied
to the following: when the current (initial) topological spread pattern is
figured out and the future (terminal) topological pattern is specified, we
can determine the probabilities (x1x2) and control the distribution of the
transition model to reduce or increase the spread rate of certain type to a
specific spread rate, which depends on the spectral radius. This usually
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x1 x2 ρ s(a1) s(a2)
0.0 0.0 5.000 0.250 0.750
0.2 0.1 5.074 0.258 0.742
0.1 0.1 5.075 0.252 0.748
0.3 0.2 5.148 0.260 0.740
0.3 0.4 5.300 0.250 0.750
0.5 0.5 5.371 0.258 0.742
0.7 0.6 5.440 0.267 0.733
0.7 0.8 5.595 0.257 0.743
0.9 0.9 5.661 0.266 0.734
1.0 1.0 5.732 0.268 0.732

Table 1. Spectral radius and spread rate of the transition
model in Example 4.4 with respect to (x1x2).

Figure 5. Effect of the number of a certain type of children
on the spread rate.

can be done by adopting some strategies such as a quarantine, lockdown or
mask-wearing policy during the epidemic prevention period.

5. Conclusion

Due to the fact that many spread patterns of infectious viruses show tree
structures, we propose two mathematical models from the topological and
random aspects to maintain these unique features and study the long-term
behaviors of the spreads of disease after the initial infectious pattern has
been found. This paper is an interdisciplinary study involving substitution
dynamical systems and the theory of branching processes. One key point of
our proposed models is that a computable way has been established to pre-
dict the long-term spread rate due to the Markov properties of the models
and matrix representations for the spread patterns. We also introduce the
transition spread model between two topological spread models to capture
the change of the spread patterns, which is a real-world phenomenon during
the epidemic periods due to changes in the environment or changes in dis-
ease control policies. As an application, our work can draw a comparison
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between two spread models with different initial spread patterns, and this
idea can be used for decision-making.
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Appendix A. Proof of Theorems

A.1. Proof of Theorem 3.1.

Proof. It follows from [21, Proposition 5.8] that limn→∞
Oa j (ζ

n(ai))

|ζn(ai)|
= va j for

all ai, a j ∈ A, which is a positive vector, independent of ai and
∑
α∈A vα =
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1. In addition, the speed of convergence is geometric. Combining these
with Proposition 2.1, we obtain result (i). Since v is positive, the result (ii)
follows from Proposition 2.2 (iii). This completes the proof. �

A.2. Proof of Theorem 3.2.

Proof. (i) Let ζ and ζ′ be the associated substitutions of {p(1)
ai }

k
i=1 and {p(1)′

ai }
k
i=1

respectively. Denote by M = Mζ = [mi, j] (M′ = Mζ′ = [m′i, j]) the ζ-matrix
(ζ′-matrix). Since D′ < d, it follows from (3) and the definitions of D′ and
d, that we have

ρ′ ≤ max
α∈A

∑
β∈A

m′β,α = max
α∈A

d(1)′
α = D′

< d = min
α∈A

d(1)
α = min

α∈A

∑
β∈A

mβ,α ≤ ρ.

Therefore, ρ′

ρ
< 1. Let v and v′ be the eigenvectors of M and M′ corre-

sponding to the eigenvalues ρ and ρ′, respectively. Since both M and M′

are both primitive integral matrices, v and v′ are both positive vectors. It
follows from (5) that∑

α∈A

∣∣∣Π(p(n)′
α )

∣∣∣
β

=
∑
α∈A

m′[n]
β,α ≤ C1(v)

(
ρ′

)n

≤
C1(v)
c1(v′)

(
ρ′

ρ

)n

c1(v′)ρn

≤
C1(v)
c1(v′)

(
ρ′

ρ

)n ∑
α∈A

m[n]
β,α

=
C1(v)
c1(v′)

(
ρ′

ρ

)n ∑
α∈A

∣∣∣Π(p(n)
α )

∣∣∣
β

.

Thus, the inequality (10) follows by taking C ≡ C1(v)
c1(v′) and r ≡ ρ′

ρ
< 1.

(ii) Note that the assumption of
∣∣∣Π(p(1)′

α )
∣∣∣
β
≤

∣∣∣Π(p(1)
α )

∣∣∣
β

implies that M ≤

M′, and the assumption of
∣∣∣Π(p(1)′

γ )
∣∣∣
δ
<

∣∣∣Π(p(1)
γ )

∣∣∣
δ

shows that m′δ,γ < mδ,γ.
Since M and M′ are both primitive matrices, Theorem 4.4.7 of [17] is ap-
plied to show that we have ρ′ < ρ. It also follows from (4) that there exist
N ∈ N, C1 and C2 > 0 such that for n ≥ N and ∀α, β ∈ A,

m′[n]
β,α ≤ C2

(
ρ′

)n and C3ρ
n ≤ m[n]

β,α .

Therefore ∣∣∣Π(p(n)′
α )

∣∣∣
β
≡ m′[n]

β,α ≤ C2
(
ρ′

)n
≤ C2C3ρ

nC−1
3

(
ρ′

ρ

)n

≤ C2C−1
3

(
ρ′

ρ

)n

m[n]
β,α =

∣∣∣Π(p(n)
α )

∣∣∣
β

.

Thus, the inequality (11) follows by taking C ≡ C2C−1
3 and r ≡ ρ′

ρ
< 1. This

completes the proof. �
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A.3. Proof of Theorem 3.10.

Proof. For each i = 1, 2, · · · , k, let Z(i) be the k-type Galton-Watson branch-
ing process (initiated with an individual of type ai) with offspring distribu-
tion {P(i)(j)}j(i)∈Nk

0
and let Ωi be the event that Z(i)

1 = j(i). By the assumptions,

P(Ωi) = 1 for all i = 1, 2, · · · , k. Let Ω0 =
k⋂

i=1
Ωi, then P(Ω0) = 1. On Ω0,

the pattern p(1)
ai is deterministic for every i = 1, 2, · · · , k, and the proof is

complete.
�

A.4. Proof of Theorem 3.12. To prove the theorem, we need the following
two lemmas.

Lemma A.1. Let λ be an eigenvalue of A of algebraic multiplicity m. Then
for any sufficient small ε > 0, there is a δ > 0 such that if ‖E‖ < δ, then
there are exactly m eigenvalues λ1, · · · , λm of A + E with |λi − λ| ≤ ε for all
i = 1, 2, · · · ,m.

The proof of Lemma A.1 can be found in [22, Page 167].

Lemma A.2. Let A be an n × n matrix with the spectral radius ρA. For any
r > ρA, there is a δ > 0 such that ρA+E ≤ r, for any n × n matrix E with
‖E‖ < δ.

Proof. Let r > ρA be given, then we have that for any λ with |λ| ≥ r > ρA,
the matrix λI − A is invertible. Since sup

|λ|≥r
(‖λI − A‖)−1 < ∞, we let

δ =
1

sup
|λ|≥r

(‖λI − A‖)−1

and, if ‖E‖ < δ, then

‖(λI − A)−1E‖ ≤ ‖(λI − A)−1‖‖E‖ < 1

and hence I − (λI − A)−1E is invertible. Thus,

λI − (A + E) = (λI − A)[I − (λI − A)−1E]

is also invertible for any λ with |λ| > r. So, r ≥ ρA+E.
�

Now, we are ready to prove Theorem 3.12.

Proof. Let M = [mi, j]k×k, M′ = [m′i, j]k×k and MT (x) = [mi, j(x)]k×k. For
any given x = (x1x2 · · · xk) with 0 ≤ x ≤ 1, then we have, for all i, j =

1, 2, · · · , k,
mi j(x) = x jmi, j + (1 − x j)m′i, j

and hence MT (x) = M+E(x), where the (i, j)-entry of E is (1−x j)(m′i, j−mi, j),
and, as x→ 1,

‖E(x)‖ ≤
[
max
1≤i≤k

(1 − xi)
][

max
1≤i, j≤k

m′i, j − min
1≤i, j≤k

mi, j]
]
→ 0.
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Now, note that M = MT (1) with probability 1 and its spectral radius ρM

is simple, so for any ε > 0, by the convergence of ‖E(x)‖ as x → 1 and
Lemmas A.1 and A.2, there is a δ > 0 such that for any x with ‖x − 1‖ < δ,
we have ρT (x) ≤ ρM + ε and there exists exactly one eigenvalue λ(x) of
MT (x) such that |λ(x) − ρM | < ε. Therefore,

ρM − ε < λ(x) ≤ ρT (x) ≤ ρM + ε

which implies ρT (x) → ρM as x → 1. (ii) can be proved along similar
lines. �
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