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Abstract. We consider the existence of the topological entropy of shift spaces
on a finitely generated semigroup whose Cayley graph is a tree. The considered
semigroups include free groups. On the other hand, the notion of stem entropy
is introduced. For shift spaces on a strict free semigroup, the stem entropy
coincides with the topological entropy. We reveal a sufficient condition for the
existence of the stem entropy of shift spaces on a semigroup. Furthermore, we
demonstrate that the topological entropy exists in many cases and is identical
to the stem entropy.
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1. Introduction

Many simplified mathematical models were proposed to understand phase tran-
sition; one of the most famous ones refers to the Ising model. Consider a ferro-
magnetic metal piece, which consists of a massive number of atoms in the thermal
equilibrium. Suppose, ideally, that these atoms are located at the sites of a crys-
tal lattice Zd. Each atom shows a magnetic moment resulted from the angular
moments, which is, for a simplified model, only capable of two orientations. The
set of configurations is X = AZd , where A = {1,−1} represents the orientations
of spins “up” and “down”. The Ising model is defined by specifying a Hamilton-
ian (or potential) describing the interaction between spins and then studying the

*Author to whom any correspondence should be addressed.
Ban and Chang are partially supported by the Ministry of Science and Technology, ROC

(Contract No MOST 109-2115-M-004-002-MY2, 109-2115-M-390 -003 -MY3 and 109-2927-I-004-
501).

1



2 JUNG-CHAO BAN, CHIH-HUNG CHANG, YU-LIANG WU, AND YU-YING WU

corresponding Gibbs states. Remarkably, there is a unique Gibbs state for d = 1,
whereas for d ≥ 3, there are infinitely many Gibbs states [17].

The notion of a Gibbs state (or a Gibbs measure) dates back to R.L. Dobrushin
(1968-1969) and O.E. Lanford and D. Ruelle (1969), who proposed it as a mathe-
matical description of an equilibrium state of a physical system which consists of a
vast number of interacting components [12, 13, 14, 15, 19]. Gibbs and equilibrium
states play a crucial role in the theory of thermodynamic formalism for dynamical
systems. A classic example is the investigation of uniformly hyperbolic differential
systems such as Anosov and Axiom A diffeomorphisms. The orbits of these sys-
tems can be encoded as infinite sequences of finite symbols; the collection of these
symbolic sequences forms a superior symbolic dynamical system called a shift of
finite type (also known as a topological Markov chain). After constructing the
invariant measures, the study of their properties is yielded by the construction of
equilibrium states in the sense of statistical mechanics, which turn out to be Gibbs
states [7, 11, 18, 28]. A remarkable fact is that a Gibbs state for a given type of
interaction may not be unique; this, in physical systems, means a phase transition.
On the other hand, equilibrium states are defined by a variational principle. More
specifically, an equilibrium maximizes the system’s entropy under the constraint of
fixed mean energy. While a Gibbs state is always an equilibrium state, the reverse
fails in general. However, equilibrium states are also Gibbs states provided the
given potential function is regular enough [17].

Investigation of Gibbs states for physical models on a Cayley tree has been
received considerable attention recently. One of many motivations is that, in the
study of the Ising model on a Cayley tree, a new type of phase transition was
revealed [23, 21, 22]. Additionally, Zachary showed that, for ferromagnetic or anti-
ferromagnetic systems on a Cayley tree, either the set of Gibbs states contains a
single point or contains infinitely many points [29, 30]. A classical construction of
Gibbs states on a Cayley tree is the method of Markov random field theory and
recurrent equations of this theory; new tools such as group theory, information flows
on trees, and node-weighted random walks have been implemented in the modern
theory of Gibbs states [27].

Aside from the physical significance of systems on a Cayley tree, there are fruitful
phenomena observed in these chaotic systems from the mathematical aspect. For
instance, the topological conjugacy between two superior symbolic systems (shifts of
finite type, to be precise) is decidable; irreducible shifts of finite type are chaotic in
Devaney’s sense; a stronger type of irreducibility is decidable. See [1, 2, 3, 4, 5, 9, 16]
and the references therein for more details.

As a Gibbs measure maximizes the system’s entropy on a crystal lattice Zd, it is of
interest whether this remains true for the system on a Cayley tree. The variational
principle for a system T is described, when one considers trivial potential, as h(T ) =
h(µ), where µ is a Gibbs measure, and h(T ) and h(µ) stand for the topological
and measure-theoretic entropies, respectively. In the theory of symbolic dynamical
systems on a crystal lattice, the topological entropy is defined as the limit of orbits’
contribution in the ball of finite volumes. Such a definition is well-defined since
Zd is an amenable group [8]. However, the absence of Følner nets in a Cayley tree
makes the definition of topological entropy a controversy; Petersen and Salama
extended the study of topological entropy to systems on a rooted Cayley tree via
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the distribution of orbits on balls [24, 25]. Notably, this is how a Gibbs measure
for a ferromagnetic Ising model on a Cayley tree is constructed (cf. [27]).

It is natural to generalize the definition of topological entropy to systems on a
Cayley graph, which corresponds to a group. Under the circumstance of the exis-
tence of topological entropy, the problem of whether a Gibbs state is an equilibrium
state then follows. In other words, the existence of the topological entropy is es-
sential for the study of the variational principle of shift spaces on a Cayley graph.
This motivates the primary concern of the present investigation.
Problem. What kinds of groups ensure the existence of the topological entropy
of systems on them?

This paper focuses on the existence of topological entropy of systems on a Cayley
graph corresponding to a class of finitely generated infinite semigroups. Let G be
a finitely generated infinite semigroup and let S ⊂ G be a finite generating subset
of G. Suppose a binary matrix K indexed by S describes the relations between
any two generators. To be more specific, for s, s′ ∈ S, K(s, s′) = 0 if and only if
ss′ = 1G, the identity element of G. Observe that the Cayley graphs of these groups
include the rooted Cayley trees and the Bethe lattices (i.e., regular Cayley trees).
In [6], the authors demonstrated that the topological entropy exists for Markov
shifts (or topological Markov chains) on a Fibonacci-Cayley tree, which is a Cayley
graph corresponding to a semigroup whose growth rate is the golden mean.

The investigation starts with introducing the notion of the stem entropy of a shift
space on G, which, roughly speaking, represents the contribution of complexity
on each branch. The existence of the stem entropy follows from the condition
that the matrix K is primitive (Theorem 3.1) or is irreducible (Proposition
3.7). Beyond that, we demonstrate the coincidence of the stem entropy and the
topological entropy provided K is a full matrix, which is equivalent to the condition
that G is a free semigroup.

Section 4 applies the existence of the stem entropy to demonstrate whether the
topological entropy of a shift space on G exists. Firstly, Theorem 4.1 reveals that
the topological entropy of Markov shifts on G exists provided K has a full row,
which is a generalization of [6]. Another main result in this section addresses that,
suppose the summation of each row of K is identical, the topological entropy of a
hom Markov shift on G exists (Theorem 4.3); hom shifts, initiated from physical
systems, are symmetric and isotropic Markov shifts (cf. [10]). It is remarkable that
the topological entropy, once it exists, coincides with the stem entropy (Theorems
4.1 and 4.3 and Proposition 4.6). On the other hand, the regular Cayley tree
satisfies the structure required in Theorem 4.3. An elegant examination of the hard
square shift (or the golden mean shift) on a binary free group goes to Piantadosi
[26].

Section 5 is devoted to graph representation of Markov shifts on G. Under the
restriction of Markov shifts on a Cayley graph, the previous sections’ results are
unified as one. Theorem 5.4 manifests that, generally speaking, if the graph rep-
resentation of the system is strongly connected and has a pivot, then the topological
entropy exists. Most importantly, the strong connectedness of the graph is equiv-
alent to the irreducibility of a one-dimensional Markov shift; a strongly connected
graph representation has a pivot if and only if its associated one-dimensional Markov
shift is mixing. It is seen that these conditions are both decidable (Proposition
5.6).



4 JUNG-CHAO BAN, CHIH-HUNG CHANG, YU-LIANG WU, AND YU-YING WU

s3

s1 s2
s3

s2
s3

s1

s2

s3

s1 s2

s1 s2
s3

s1

s2
s3

s1

s3

s1 s2

Figure 1. The Bethe lattice of order 3

Some numerical experiments are carried out in the Appendix for the existence
of topological entropy of general systems on G. Further elucidation is under prepa-
ration.

2. Preliminaries

Let G be a finitely generated semigroup and Sk = {s1, s2, · · · , sk} ⊂ G a finite
generating subset of G. Suppose the relations between the generators of G = ⟨Sk|R⟩
are represented by a binary matrix K indexed by Sk as R = {sisj : K(si, sj) = 0}.
In other words,

sisj = 1G if and only if K(si, sj) = 0,

where 1G is the identity element of G. The (right) Cayley graph of G with respect
to Sk is the directed graph T such that the vertex set is G and the edge set is
E = {(g, gs) : g ∈ G, s ∈ Sk}. It follows that T is an infinite tree. On the other
hand, every g ∈ G has a unique minimal representation g = g1g2 · · · gn (with respect
to Sk). The length of the g, written as |g|, is defined by

|g| = min{n : g = g1g2 · · · gn, gi ∈ Sk}.

Obviously, 1G is the only element of length 0, and g = g1g2 · · · gn, gi ∈ Sk, is the
unique minimal representation if |g| = n and K(gi, gi+1) = 1 for 1 ≤ i ≤ n − 1.
Such a minimal representation is assumed for every element throughout the paper
unless mentioned otherwise.

Example 2.1. (a) Let S2 = {a, b} and K = E2 the full 2× 2 matrix. Then G is a
free semigroup whose Cayley graph T is a binary rooted tree.

(b) Let S4 = {s1, s2, s3, s4} and K ∈ {0, 1}4×4 given by K(si, sj) = 0 if and only
if i+ j is even and i ̸= j. Then G = F2 is a free group of rank 2. Figure 2 presents
part of the Cayley graph of F2.

(c) Suppose Sk = {s1, s2, . . . , sk}, k ≥ 2, and K is the k× k binary matrix given
by K(si, sj) = 0 if and only if i = j. It is seen that G is a free product of k cyclic
groups of the second order, and its Cayley graph T = Γk−1 is the Bethe lattice
(regular Cayley tree) of order k.
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(d) Let S2 = {a, b} and K =

(
1 1
1 0

)
the golden mean matrix. The Cayley

graph of G is called the Fibonacci-Cayley tree in [6] since the growth rate of {g ∈
G : |g| ≤ n} is the golden mean.

It is noteworthy that this class of semigroups covers many interesting examples
with the exceptions of some simple ones nevertheless, such as N2 or cyclic groups.

2.1. Shift spaces on a Cayley tree. Let A be a set of finite alphabet. A labeled
tree (or configuration) is a function t : G → A for which tg := t(g) is the label
attached to g ∈ G, and the set AG consisting of all labeled trees is called the full
tree shift or full shift on G. A pattern is a function u : AH → A for some finite set
H ⊂ G, where s(u) := H is the support of u. We say that a pattern u is accepted
by t ∈ AG if there exists g ∈ G such that tgh = uh for every h ∈ s(u); otherwise, t
rejects u. A subset X ⊆ AG is a tree shift (or shift space on G) if there exists a set
of patterns F such that t rejects any u ∈ F for all t ∈ X. We write X = XF and
call F a forbidden set for X. A tree shift X is a tree shift of finite type (TSFT) if
X = XF for some finite forbidden set F . Let A = (A1, A2, . . . , Ak) be a k-tuple of
binary matrices indexed by A. A Markov tree shift XA ⊂ AG is defined as

XA := {t ∈ AG : Ai(tg, tgsi) = 1 for all g ∈ G, |gsi| = |g|+ 1}.

It follows from the definition that a Markov tree shift is a TSFT; conversely, every
TSFT is topological conjugate with a Markov tree shift [3].

2.2. Topological entropy and stem entropy. Let G be a finitely generated
semigroup and A a finite alphabet. Suppose that X ⊂ AG is a tree shift. We intro-
duce the following notions which are fundamental units in the present elaboration.

For g ∈ G and n ≥ 0, denote by ∆
(g)
n the n-ball centered at g as

∆(g)
n = {gh : h ∈ G, |h| ≤ n},

with ∆
(1G)
n simply denoted by ∆n. On the other hand, we define the n-semiball

centered at g as
∆̄(g)

n = {gh : h ∈ G, |h| ≤ n, and |gh| = |g|+ |h|}.

Observe that ∆̄
(g)
n is the initial n-subtree rooted at g. Furthermore, let

∆̄(si)+
n = {sih : h ∈ G, |h| ≤ n, and |sih| = 1 + |h|} ∪ {1G}

denote the ith branch of the Cayley graph with the root 1G.
Notation. Suppose g ∈ G, a ∈ A, and n is a nonnegative integer.

(1) B
(g)
n := {u ∈ A∆(g)

n : u is accepted by some t ∈ X};
(2) B

(g)
n;a := {u ∈ B

(g)
n : ug = a};

(3) Bn := B
(1G)
n , Bn;a := B

(1G)
n;a ;

(4) C
(g)
n := {u ∈ A∆̄(g)

n : u is accepted by some t ∈ X};
(5) C

(si)+
n := {u ∈ A∆̄

(si)+
n : u is accepted by some t ∈ X};

(6) C
(g)
n;a := {u ∈ C

(g)
n : ug = a};

(7) C
(si)+
n;a := {u ∈ C

(si)+
n : u1G = a};

(8) p
(g)
n := |C(g)

n |, p(g)n;a := |C(g)
n;a|, pn := |Bn|, pn;a := |Bn;a|;

(9) q
(si)
n := |C(si)+

n |, q(si)n;a := |C(si)+
n;a |.
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Figure 2. The support of patterns in C
(s1)
2;a is a 2-semiball cen-

tered at s1

Suppose G = F2 is a free group generated by S4 = {s1, s2, s−1
1 , s−1

2 } for instance.
Figures 2 and 3 illustrate C

(s1)
2;a and C

(s1)+
3;a respectively.

Definition 2.2. Suppose G is a finitely generated semigroup and A is a finite
alphabet. Let X ⊂ AG be a tree shift and g ∈ G.

(a) The ith-stem entropy of X is defined as

(1) h(si) = h(si)(X) := lim sup
n→∞

log p
(si)
n

|∆̄(si)
n |

.

The stem entropy, denoted by h(s), of X exists if h(si) = h(sj) for all i, j.
(b) The topological entropy of X is defined as

(2) h = h(X) := lim
n→∞

log pn
|∆n|

provided the limit exists.

Remark 2.3. Suppose that G is a strict semigroup; that is, no element in G has an
inverse element. A straightforward examination indicates that h(s) = h provided
h(s) exists. Indeed, B(g)

n = C
(g)
n since ∆

(g)
n = ∆̄

(g)
n for g ∈ G and n ≥ 0. Later,

Theorem 3.1 yields a sufficient condition for the existence of the stem entropy for
a class of semigroups.

Suppose that G = ⟨Sk|⟩ is a strict free semigroup of rank k; that is, K = Ek

is a full k × k matrix. The Cayley graph of G is an infinite rooted tree such that
every node has k children. Petersen and Salama [24, 25] demonstrated that the
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Figure 3. The support of patterns in C
(s1)+
3;a

topological entropy (2) of a tree shift (i.e., a shift space on an infinite rooted tree)
exists and that

h = inf
n→∞

log pn
|∆n|

.

In [26], Piantadosi considered the golden mean shift XA,At on F2, where A = (A,A)

with A =

(
1 1
1 0

)
and At = (At, At) with At the transpose of A. Recall that

F2 = ⟨S4|R⟩ such that R is determined by K(si, sj) = 0 if and only if i + j is
even and i ̸= j. Piantadosi demonstrated the existence of the topological entropy
of XA,At via estimating the growth rate of q

(si)
n . The present paper generalizes

Piantadosi’s result to a class of Markov tree shifts on Fl for l ≥ 2. More precisely, we
show that the limit of the stem entropy exists (Theorems 3.1 and 3.6). Additionally,
the topological entropy coincides with the stem entropy (Proposition 4.5).

3. Existence of Stem Entropy

This section aims at the exposition of the existence of the stem entropy. A
straightforward examination derives that the stem entropy, which does exist, is
nothing more than the topological entropy provided G is a strict semigroup. There-
fore, the notion of the stem entropy can be seen as an extended discussion of the
topological entropy whenever G is not a strict semigroup. On the other hand, it is
of interest to the interaction between the stem and topological entropies.

Let G = ⟨Sk|R⟩ be a finitely generated semigroup with generating subset Sk =
{s1, s2, . . . , sk}. Suppose that the relation set R is represented by a k × k binary
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matrix K as follows:
sisj ∈ R if and only if K(si, sj) = 0.

With abusing the notation, we write G = ⟨Sk|K⟩ to specify the equivalence of R and
K. Let A be a finite alphabet and X ⊂ AG a tree shift. The main result, existence
of the stem entropy, of this section is split into two theorems. The following theorem
reveals a class of semigroups such that the stem entropy of a shift space on which
exists. Additionally, Theorem 3.6 demonstrates that the limit in (1) also exists. For
the sake of simplification, the notations Sk,K,G, and A satisfy those conditions
above in the remainder of this paper unless otherwise specified.

Theorem 3.1. Suppose that G = ⟨Sk|K⟩ is a finitely generated semigroup, and
X ⊂ AG is a shift space on G. If K is primitive, then the stem entropy of X exists.
In other words, for 1 ≤ i, j ≤ k,

(A1) lim sup
m→∞

log p
(si)
m

|∆̄(si)
m |

= lim sup
m→∞

log p
(sj)
m

|∆̄(sj)
m |

.

The following series of lemmas are prerequisite for proving the theorem. We
start with a property possessed by a primitive matrix. Recall that a nonnegative
matrix is primitive if it is eventually positive.

Lemma 3.2. Let N be a k × k primitive binary matrix and let µ be its largest
eigenvalue. Then, for 1 ≤ i, j ≤ k, there exists c = c(i, j) > 0 such that

lim
n→∞

Nn(i, j)

cµn
= 1.

Furthermore, if µ′ is an eigenvalue of N such that the eigenspace corresponding to
µ′ contains a positive vector, then µ′ > 1.

Proof. The Lemma is a consequence of the Perron-Frobenius theorem. The proof
of the asymptotic behavior of Nn is could be found in [20, Theorem 4.5.12]. As for
µ′ > 1, [20, Theorem 4.2.3] assures that µ′ = µ, and N is primitive implies Nn(i, j)
tends to infinity. These together with [20, Theorem 4.5.12] leads to µ′ > 1. □
Lemma 3.3. Let {an}∞n=1, {cn}∞n=1 be real sequences and {bn}∞n=1, {dn}∞n=1 be
positive real sequences. Suppose

lim
n→∞

an
bn

= lim
n→∞

cn
dn

= L.

Then
lim
n→∞

an + cn
bn + dn

= L.

Suppose, furthermore, that limn→∞
∑n

j=1 bj = +∞. Then

lim
n→∞

∑n
j=1 aj∑n
j=1 bj

= L.

Proof. The equality limn→∞
an+cn
bn+dn

= L is immediate and thus the proof is omitted.
For the second part, to emphasize the importance of limn→∞

∑n
j=1 aj∑n
j=1 bj

we provide
the following detailed discussion.

We prove that for all real numbers M > L and m < L, lim supn→∞
a1+···+an

b1+···+bn
≤

M and lim infn→∞
a1+···+an

b1+···+bn
≥ m, and thus the lemma is proved. By definition of
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limit superior, there is a positive integer N1 such that an

bn
< M for all n ≥ N1.

Then for n > N1,
an < Mbn

and
a1 + · · ·+ an
b1 + · · ·+ bn

=
a1 + · · ·+ aN1

b1 + · · ·+ bn
+

aN1+1 + · · ·+ an
b1 + · · ·+ bn

<
a1 + · · ·+ aN1

b1 + · · ·+ bn
+M

bN1+1 + · · ·+ bn
b1 + · · ·+ bn

<
a1 + · · ·+ aN1

b1 + · · ·+ bn
+M.

Since N1 is fixed and limn→∞
∑n

j=1 bj = +∞, we have

lim sup
n→∞

a1 + · · ·+ an
b1 + · · ·+ bn

≤ lim
n→∞

(
a1 + · · ·+ aN1

b1 + · · ·+ bn
+M) = M.

As for the limit inferior part, there exists a positive integer N2 such that an

bn
> m

for all n ≥ N2. Therefore,
a1 + · · ·+ an
b1 + · · ·+ bn

=
a1 + · · ·+ aN2

b1 + · · ·+ bn
+

aN2+1 + · · ·+ an
b1 + · · ·+ bn

>
a1 + · · ·+ aN2

b1 + · · ·+ bn
+m

bN2+1 + · · ·+ bn
b1 + · · ·+ bn

.

By applying limn→∞
∑n

j=1 bj = +∞ again, we have that limn→∞
bN2+1+···+bn

b1+···+bn
= 1

and that

lim inf
n→∞

a1 + · · ·+ an
b1 + · · ·+ bn

≥ lim
n→∞

[
a1 + · · ·+ aN3

b1 + · · ·+ bn
+m

bN2+1 + · · ·+ bn
b1 + · · ·+ bn

]
= m.

The proof is thus complete. □

The following lemma gives an explicit expression for the number of nodes in the
initial n-subtree.

Lemma 3.4. Suppose that G = ⟨Sk|K⟩ is finitely generated. For 1 ≤ i ≤ k, m ≥ 0,
n ≥ 0 and q ≥ 1, the following statements are true:

(i)

|∆̄(si)
n | = 1 +

n∑
l=1

k∑
j=1

Kl(si, sj).

(ii)

|∆̄(si)
n+q(m+1)| = |∆̄

(si)
n |+

k∑
l=1

q−1∑
j=0

Kn+j(m+1)+1(si, sl)|∆̄(sl)
m |.

(iii)

p
(si)
n+q(m+1) ≤ p(si)n

k∏
l=1

(p(sl)m )
∑q−1

j=0 Kn+j(m+1)+1(si,sl).

Proof. (i) The length of each element in ∆̄
(si)
n is at most n. There is one element

of length 0, and for 1 ≤ l ≤ n, there exists
∑k

j=1 K
l(si, sj) elements of lenth l in

∆̄
(si)
n . Hence there are 1+

∑k
j=1 K(si, sj)+ · · ·+

∑k
j=1 K

n(si, sj) elements in total.
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(ii) We prove it by induction on q. Since ∆̄
(si)
n+m+1 can be decomposed into

disjoint union of 1 copy of ∆̄(si)
n , Kn+1(si, s1) copies of ∆̄(s1)

m ,…,Kn+1(si, sk) copies
of ∆̄(sk)

m , thus the result holds when q = 1.
Suppose the statement is true for some q − 1 ∈ N. Applying the result in the

induction step, we obtain

|∆̄(si)
n+(q−1)(m+1)+m+1| = |∆̄

(si)
n+(q−1)(m+1)|+

k∑
l=1

Kn+(q−1)(m+1)+1(si, sl)|∆̄(sl)
m |.

The induction hypothesis gives that

|∆̄(si)
n+(q−1)(m+1)| = |∆̄

(si)
n |+

k∑
l=1

q−2∑
j=0

Kn+j(m+1)+1(si, sl)|∆̄(sl)
m |.

Therefore,

|∆̄(si)
n+q(m+1)| = |∆̄

(si)
n+(q−1)(m+1)+m+1|

= |∆̄(si)
n+(q−1)(m+1)|+

k∑
l=1

Kn+(q−1)(m+1)+1(si, sl)|∆̄(sl)
m |

= |∆̄(si)
n |+

k∑
l=1

q−2∑
j=0

Kn+j(m+1)+1(si, sl)|∆̄(sl)
m |

+

k∑
l=1

Kn+(q−1)(m+1)+1(si, sl)|∆̄(sl)
m |

= |∆̄(si)
n |+

k∑
l=1

q−1∑
j=0

Kn+j(m+1)+1(si, sl)|∆̄(sl)
m |.

The proof is complete.
(iii) We prove it by induction on q. Recall that ∆̄

(si)
n+m+1 is a disjoint union of

1 copy of ∆̄
(si)
n , Kn+1(si, s1) copies of ∆̄

(s1)
m , Kn+1(si, s2) copies of ∆̄

(s2)
m and so

on, where the number of acceptable patterns of ∆̄
(si)
n is p

(si)
n , and the number of

acceptable patterns of ∆̄(sj)
m is p

(sj)
m for 1 ≤ j ≤ k. The number p

(si)
n+m+1 could not

exceed p
(si)
n
∏k

l=1(p
(sl)
m )(K

n+1)(si,sl), the result is valid when q = 1.
Now we assume the result holds for some q − 1 ∈ N. Then

p
(si)
q(m+1)+n = p

(si)
(q−1)(m+1)+n+m+1

≤ p
(si)
(q−1)(m+1)+n

k∏
l=1

(p(sl)m )(K
(q−1)(m+1)+n+1)(si,sl)

≤ p(si)n

k∏
l=1

(p(sl)m )
∑q−2

j=0 (K
n+j(m+1)+1)(si,sl)

k∏
l=1

(p(sl)m )(K
(q−1)(m+1)+n+1)(si,sl)

≤ p(si)n

k∏
l=1

(p(sl)m )
∑q−1

j=0 (K
n+j(m+1)+1)(si,sl),

the proof is complete. □
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Aside from the elaboration of Lemmas 3.2-3.4, the following lemma, which plays
a crucial role in the proof of Theorem 3.1, further portrays the composition of every
m-subtree in terms of all n-subtree when m ≥ n.

Lemma 3.5. Suppose that G = ⟨Sk|K⟩ is finitely generated and K is primitive.
For m ≥ 0 and 1 ≤ i, j ≤ k, the following statements are true:

(i)

lim
n→∞

|∆̄(sj)
n |

|∆̄(si)
n+m+1|

> 0 and
k∑

l=1

lim
n→∞

Km+1(si, sl)|∆̄(sl)
n |

|∆̄(si)
n+m+1|

= 1.

(ii) There exists γ > 0 such that

lim
q→∞

∑q−1
l=0 Kr+l(m+1)+1(si, sj)

|∆̄(si)
q(m+1)+r|

=
γ

λm+1 − 1
for all r ≥ 0.

(iii) For all r ≥ 0,
k∑

j=1

lim
q→∞

∑q−1
l=0 Kr+l(m+1)+1(si, sj)|∆̄

(sj)
m |

|∆̄(si)
q(m+1)+r|

= 1.

Proof. (i) Let m ≥ 0, 1 ≤ i, j ≤ k be given. For 1 ≤ l ≤ k, from Lemma 3.2 we
know there are positive numbers al and bl such that

lim
n→∞

Kn(sj , sl)

alλn
= 1

and
lim

n→∞

Kn(si, sl)

blλn
= 1.

Thus using Lemma 3.3, we have

lim
n→∞

∑k
l=1 K

n(sj , sl)

(
∑k

l=1 al)λ
n

= 1

and

lim
n→∞

∑k
l=1 K

n+m+1(si, sl)

(
∑k

l=1 bl)λ
n+m+1

= 1.

Since K is a primitive {0, 1}-matrix, Lemma 3.2 ensures that the largest eigenvalue
of K is greater than 1. Therefore we may apply Lemma 3.3 and obtain

(3) lim
n→∞

|∆̄(sj)
n |∑n

s=1

∑k
l=1 alλ

s
= lim

n→∞

1 +
∑n

s=1

∑k
l=1 K

s(sj , sl)∑n
s=1

∑k
l=1 alλ

s
= 1

and

(4) lim
n→∞

|∆̄(si)
n+m+1|∑n+m+1

s=1

∑k
l=1 blλ

s
= lim

n→∞

1 +
∑n+m+1

s=1

∑k
l=1 K

s(si, sl)∑n+m+1
s=1

∑k
l=1 blλ

s
= 1.

We also consider

(5) lim
n→∞

∑n
s=1

∑k
l=1 alλ

s∑n+m+1
s=1

∑k
l=1 blλ

s
= lim

n→∞

∑k
l=1 al∑k
l=1 bl

λ(λn−1)
λ−1

λ(λn+m+1−1)
λ−1

=

∑k
l=1 al

λm+1
∑k

l=1 bl
.
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The existence of the limit of {|∆̄(sj)
n |/|∆̄(si)

n+m+1|}∞n=1 follows from (3), (4) and (5).
We also have

lim
n→∞

|∆̄(sj)
n |

|∆̄(si)
n+m+1|

= lim
n→∞

|∆̄(sj)
n |∑n

s=1

∑k
l=1 alλ

s
lim
n→∞

∑n+m+1
s=1

∑k
l=1 blλ

s

|∆̄(si)
n+m+1|

lim
n→∞

∑n
s=1

∑k
l=1 alλ

s∑n+m+1
s=1

∑k
l=1 blλ

s

=

∑k
l=1 al

λm+1
∑k

l=1 bl
> 0.

From Lemma 3.4 (ii) we see that

|∆̄(si)
n+m+1| = |∆̄(si)

m |+
k∑

l=1

Km+1(si, sl)|∆̄(sl)
n |.

Hence it yields
k∑

l=1

lim
n→∞

Km+1(si, sl)|∆̄(sl)
n |

|∆̄(si)
n+m+1|

= lim
n→∞

∑k
l=1 K

m+1(si, sl)|∆̄(sl)
n |

|∆̄(si)
n+m+1|

= lim
n→∞

|∆̄(si)
n+m+1| − |∆̄

(si)
m |

|∆̄(si)
n+m+1|

= 1.

(ii) Let r,m ≥ 0 and 1 ≤ i, j ≤ k be given. Let b1,…,bk be as in the proof of
Lemma 3.5 (i). Then

lim
n→∞

Kn(si, sj)

bjλn
= 1 for j = 1, . . . , k

and thus

lim
n→∞

∑k
l=1 K

n(si, sl)∑k
l=1 blλ

n
= 1

by Lemma 3.3. Consequently, using Lemma 3.3 we obtain

lim
q→∞

∑q−1
l=0 Kr+l(m+1)+1(si, sj)

bj
∑q−1

l=0 λr+l(m+1)+1
= 1

and

lim
q→∞

|∆̄(si)
q(m+1)+r|∑k

s=1 bs
∑q(m+1)+r

l=1 λl
= lim

q→∞

1 +
∑q(m+1)+r

s=1

∑k
l=1 K

s(si, sl)∑k
s=1 bs

∑q(m+1)+r
l=1 λl

= 1.

Since

lim
q→∞

∑q−1
l=0 (K

r+l(m+1)+1)(si, sj)

|∆̄(si)
q(m+1)+r|

= lim
q→∞

bj∑k
s=1 bs

∑q−1
l=0 λr+l(m+1)+1∑q(m+1)+r

l=1 λl

= lim
q→∞

bj∑k
s=1 bs

λr+1(λq(m+1) − 1)

λm+1 − 1

λ− 1

λ(λq(m+1)+r − 1)

=
bj∑k
s=1 bs

λ− 1

λm+1 − 1
> 0

and the number bj(λ−1)∑k
s=1 bs

does not depend on the choice of r, the proof is complete.
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(iii) Let r,m ≥ 0 and 1 ≤ i, j ≤ k be given. Using Lemma 3.4 (ii) we see that

|∆̄(si)
r+q(m+1)| = |∆̄

(si)
r |+

k∑
j=1

q−1∑
l=0

Kr+l(m+1)+1(si, sj)|∆̄(sj)
m |.

Therefore

k∑
j=1

lim
q→∞

∑q−1
l=0 Kr+1+l(m+1)(si, sj)|∆̄

(sj)
m |

|∆̄(si)
q(m+1)+r|

= lim
q→∞

∑k
j=1

∑q−1
l=0 Kr+1+l(m+1)(si, sj)|∆̄

(sj)
m |

|∆̄(si)
q(m+1)+r|

= lim
q→∞

|∆̄(si)
r+q(m+1)| − |∆̄

(si)
r |

|∆̄(si)
q(m+1)+r|

= 1.

This derives the desired result. □

With the delivery of Lemma 3.5, we are at the position of presenting the proof
of Theorem 3.1.

Proof of Theorem 3.1. Since K is a primitive matrix, we may choose a positive
integer n such that Kn is a positive matrix. We also assume that

lim sup
m→∞

log p
(sI′ )
m

|∆̄(sI′ )
m |

= max
1≤j≤k

lim sup
m→∞

log p
(sj)
m

|∆̄(sj)
m |

.

From Lemma 3.4 (iii) we see that

p
(sI′ )
n+m+1 ≤ p(sI′ )n

k∏
l=1

(p(sl)m )K
n+1(sI′ ,sl),

which leads to

log p
(sI′ )
n+m+1

|∆̄(sI′ )
m+n+1|

≤ log p
(sI′ )
n

|∆̄(sI′ )
m+n+1|

+

k∑
l=1

Kn+1(sI′ , sl)|∆̄(sl)
m |

|∆̄(sI′ )
m+n+1|

log p
(sl)
m

|∆̄(sl)
m |

.

Recall that Lemma 3.5 gives

lim
m→∞

|∆̄(sj)
m |

|∆̄(sI′ )
m+n+1|

> 0 for j = 1, . . . , k

and
k∑

l=1

lim
m→∞

Kn+1(sI′ , sl)|∆̄(sl)
m |

|∆̄(sI′ )
m+n+1|

= 1.
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Therefore
k∑

l=1

lim
m→∞

Kn+1(sI′ , sl)|∆̄(sl)
m |

|∆̄(sI′ )
m+n+1|

lim sup
m→∞

log p
(sI′ )
m

|∆̄(sI′ )
m |

= lim sup
m→∞

log p
(sI′ )
m

|∆̄(sI′ )
m |

= lim sup
m→∞

log p
(sI′ )
m+n+1

|∆̄(sI′ )
m+n+1|

≤ lim sup
m→∞

log p
(sI′ )
n

|∆̄(sI′ )
m+n+1|

+

k∑
l=1

lim sup
m→∞

Kn+1(sI′ , sl)|∆̄(sl)
m |

|∆̄(sI′ )
m+n+1|

log p
(sl)
m

|∆̄(sl)
m |

≤
k∑

l=1

lim
m→∞

Kn+1(sI′ , sl)|∆̄(sl)
m |

|∆̄(sI′ )
m+n+1|

lim sup
m→∞

log p
(sl)
m

|∆̄(sl)
m |

and thus

lim sup
m→∞

log p
(sI′ )
m

|∆̄(sI′ )
m |

= lim sup
m→∞

log p
(sl)
m

|∆̄(sl)
m |

for l = 1, . . . , k.

This completes the proof. □

Besides the demonstration of the existence of the stem entropy, the following
theorem deduces that the limit in the definition of the stem entropy does exist once
h(si) = h(sj) for 1 ≤ i, j ≤ k.

Theorem 3.6. Suppose that G = ⟨Sk|K⟩ is finitely generated, and X ⊆ AG is a
tree shift. If K is primitive, then the limit of the ith-stem entropy of X (1) exists,
and

(A2) lim
n→∞

log p
(si)
n

|∆̄(si)
n |

= inf
n≥0

max
1≤j≤k

log p
(sj)
n

|∆̄(sj)
n |

for 1 ≤ i ≤ k.

Proof. Let 1 ≤ i ≤ k and ϵ > 0 be given. We choose an integer m > 0 such that

log p
(si)
m

|∆̄(si)
m |

< lim inf
n→∞

log p
(si)
n

|∆̄(si)
n |

+ ϵ

and
log p

(sl)
m

|∆̄(sl)
m |

< lim sup
n→∞

log p
(sl)
n

|∆̄(sl)
n |

+ ϵ, for l ̸= i.

For r ≥ 0, q ≥ 1, Lemma 3.4 (iii) gives

p
(si)
r+q(m+1) ≤ p(si)r

k∏
l=1

(p(sl)m )
∑q−1

j=0 (K
r+j(m+1)+1)(si,sl),

which yields

(6)
log p

(si)
q(m+1)+r

|∆̄(si)
q(m+1)+r|

≤ log p
(si)
r

|∆̄(si)
q(m+1)+r|

+

k∑
l=1

q−1∑
j=0

Kr+j(m+1)+1(si, sl)|∆̄(sl)
m |

|∆̄(si)
q(m+1)+r|

log p
(sl)
m

|∆̄(sl)
m |

.
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For l = 1, . . . , k, let L(l) denote the limit of {
∑q−1

j=0 K
r+j(m+1)+1(si, sl)|∆̄(sl)

m |/|∆̄(si)
q(m+1)+r|}

∞
q=1.

From Lemma 3.5 we know that each L(l) is positive and the value of L(1)+ · · ·+L(k)

is 1. Taking limit superior at both sides of (6) we thus obtain

lim sup
q→∞

log p
(si)
q(m+1)+r

|∆̄(si)
q(m+1)+r|

≤
k∑

l=1

L(l) log p
(sl)
m

|∆̄(sl)
m |

< L(i)
(
lim inf
n→∞

log p
(si)
n

|∆̄(si)
n |

+ ϵ
)
+
∑
l ̸=i

L(l)
(
lim sup
n→∞

log p
(sl)
n

|∆̄(sl)
n |

+ ϵ
)

= L(i)
(
lim inf
n→∞

log p
(si)
n

|∆̄(si)
n |

+ ϵ
)
+
∑
l ̸=i

L(l)
(
lim sup
n→∞

log p
(si)
n

|∆̄(si)
n |

+ ϵ
)
.

Therefore

lim sup
n→∞

log p
(si)
n

|∆̄(si)
n |

= max
0≤r≤m

lim sup
q→∞

log p
(si)
q(m+1)+r

|∆̄(si)
q(m+1)+r|

< L(i)
(
lim inf
n→∞

log p
(si)
n

|∆̄(si)
n |

+ ϵ
)
+
∑
l ̸=i

L(l)
(
lim sup
n→∞

log p
(si)
n

|∆̄(si)
n |

+ ϵ
)
.

Since ϵ is arbitrary, the inequality above leads to
k∑

l=1

L(l) lim sup
n→∞

log p
(si)
n

|∆̄(si)
n |

= lim sup
n→∞

log p
(si)
n

|∆̄(si)
n |

≤ L(i) lim inf
n→∞

log p
(si)
n

|∆̄(si)
n |

+
∑
l ̸=i

L(l) lim sup
n→∞

log p
(si)
n

|∆̄(si)
n |

,

which also gives

lim sup
n→∞

log p
(si)
n

|∆̄(si)
n |

= lim inf
n→∞

log p
(si)
n

|∆̄(si)
n |

.

It remains to show that the stem entropies equal the infimum. Note that for
1 ≤ l ≤ k the value of L(l) does not depend on the choice of r. Observe that (6)
holds for all m ≥ 0. Taking r = 0 into (6) and letting q tends to infinity, we obtain

lim
n→∞

log p
(si)
n

|∆̄(si)
n |

= lim
q→∞

log p
(si)
q(m+1)+r

|∆̄(si)
q(m+1)+r|

≤
k∑

l=1

L(l) log p
(sl)
m

|∆̄(sl)
m |

≤
k∑

l=1

L(l) max
1≤j≤k

log p
(sj)
m

|∆̄(sj)
m |

= max
1≤j≤k

log p
(sj)
m

|∆̄(sj)
m |

.
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Hence

lim
n→∞

log p
(si)
n

|∆̄(si)(n)|
= inf

m≥0
max
1≤j≤k

log p
(sj)
m

|∆̄(sj)(m)|
.

The proof is complete. □

Proposition 3.7. The assumption of the matrix K could be loosen so that it is
irreducible while (A1) and (A2) are still valid.

Proof. Let K be irreducible with period P . According to the cyclic structure of
K discussed in [20, Section 4.5], with a proper permutation in index, K has the
following form:

(7)


O K1 O · · · O O
O O K2 · · · O O
...

...
... . . . ...

...
O O O · · · O KP−1

KP O O · · · O O

 .

Furthermore, by recursively defining Kn = Kn−P for every n > P , the matrix
Kr := KrKr+1 . . .Kr+P−1 is a primitive matrix and the spectral radius ρ(Kr) =
ρ(K)P .

The consequence of the above property yields an estimate of the number L
(si)
n

of points in n-th level of ∆̄(si)
n . Suppose si corresponds to the row index I in the

matrix Kr, which has kr rows in total. Let eI be the kr-dimensional column vector
with all entries 0 except for the entry index by I being 1

L(si)
n =

k∑
j=1

Kn(si, sj)

= eTI KrKr+1 . . .Kr+n−11

= eTI K
⌊ n
P ⌋

r Kr+P⌊ n
P ⌋ . . .Kr+n−11.

Thus,

(8) 0 < lim inf
n→∞

L
(si)
n

ρ(K)n
≤ lim sup

n→∞

L
(si)
n

ρ(K)n
<∞,

and by a similar argument used in Lemma 3.3

(9) lim inf
n→∞

|∆̄(sj)
n |

|∆̄(si)
n+m|

= lim inf
n→∞

∑n
l=0 L

(sj)
l∑n+m

l=0 L
(si)
l

≥
lim infn→∞

L
(sj)
n

ρ(K)n

ρ(K)m · lim supn→∞
L

(si)

n+m

ρ(K)n+m

> 0.

To prove (A1), let n be a positive integer such that Kn+1(si, sj) > 0 and

lim sup
m→∞

log p
(si)
m

|∆̄(si)
m |

= max
1≤l≤k

lim sup
m→∞

log p
(sj)
m

|∆̄(sl)
m |

,

lim sup
m→∞

log p
(sj)
m

|∆̄(sj)
m |

= min
1≤l≤k

lim sup
m→∞

log p
(sj)
m

|∆̄(sl)
m |

.
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By taking limit superior in m from

log p
(si)
n+m+1

|∆̄(si)
m+n+1|

≤ log p
(si)
n

|∆̄(si)
m+n+1|

+

k∑
l=1

Kn+1(si, sl)|∆̄(sl)
m |

|∆̄(si)
m+n+1|

log p
(sl)
m

|∆̄(sl)
m |

,

we derive

lim sup
m→∞

log p
(si)
m

|∆̄(si)
m |

= lim inf
m→∞

Kn+1(si, sj)|∆̄
(sj)
m |

|∆̄(si)
m+n+1|

lim sup
m→∞

log p
(sj)
m

|∆̄(sj)
m |

+ (1− lim inf
m→∞

Kn+1(si, sj)|∆̄
(sj)
m |

|∆̄(si)
m+n+1|

) lim sup
m→∞

log p
(si)
m

|∆̄(si)
m |

.

Equation (A1) follows as a consequence of lim infm→∞
Kn+1(si,sj)|∆̄

(sj)
m |

|∆̄(si)

m+n+1|
> 0, which

follows from (7) and (9).
We divide the proof of (A2) into two parts. That is, lim supn→∞

log p
(si)
n

|∆̄(si)
n |

≤

lim infn→∞
log p

(si)
n

|∆̄(si)
n |

and limn→∞
log p

(si)
n

|∆̄(si)
n |

≤ max1≤j≤k
log p

(sj)
n

|∆̄
(sj)
n |

for every n ≥ 0. For
the first part, let C be a positive constant depending only on K defined as

C :=

1, if ρ(K) = 1;

min
1≤i≤k

(
lim

m→∞
KmP (si,si)
ρ(K)mP inf

m≥0

|∆̄(si)
m |

ρ(K)m+P lim inf
m→∞

ρ(K)m

|∆̄(si)
m |

)
, if ρ(K) > 1,

and let 1 ≤ i ≤ k and ϵ > 0 be given. We choose an integer N ≥ P and m0 ≥ N
such that for every m ≥ N

log p
(sl)
m

|∆̄(sl)
m |

< lim sup
n→∞

log p
(sl)
n

|∆̄(sl)
n |

+ ϵ, for l ̸= i

and that

log p
(si)
m0

|∆̄(si)
m0 |

< lim inf
n→∞

log p
(si)
n

|∆̄(si)
n |

+ ϵ.

For every m ≥ 0, define rm = max{nP ≥ 0 : nP +m0 + 1 ≤ m}, n0 = min{n ≥
N : P |n+m0 + 2}, P0 = m0 + n0 + 2 and Sm = {rm − nP0 : n ∈ N}. Thus, for all
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sufficiently large m ≥ N ,

log p
(si)
m

|∆̄(si)
m |

≤
|∆̄(si)

minSm
|

|∆̄(si)
m |

log p
(si)
minSm

|∆̄(si)
minSm

|
+

k∑
l=1

∑
n∈Sm∪{rm}

Kn(si, sl)|∆̄(sl)
m0 |

|∆̄(si)
m |

log p
(sl)
m0

|∆̄(sl)
m0 |

+

k∑
l=1

∑
n∈Sm

Kn+m0+1(si, sl)|∆̄(sl)
n0 |

|∆̄(si)
m |

log p
(sl)
n0

|∆̄(sl)
n0 |

+

k∑
l=1

Krm+m0+1(si, sl)|∆̄(sl)
m−(rm+m0+1)|

|∆̄(si)
m |

log p
(sl)
m−(rm+m0+1)

|∆̄(sl)
m−(rm+m0+1)|

≤

 k∑
l=1

∑
n∈Sm∪{rm}

Kn(si, sl)|∆̄(sl)
m0 |

|∆̄(si)
m |

(lim inf
n→∞

log p
(si)
n

|∆̄(si)
n |

+ ϵ

)

+

1−
k∑

l=1

∑
n∈Sm∪{rm}

Kn(si, sl)|∆̄(sl)
m0 |

|∆̄(si)
m |

(lim sup
n→∞

log p
(si)
n

|∆̄(si)
n |

+ ϵ

)

Since K is of the form (7), by taking limit superior in m from both sides it yields

lim sup
m→∞

log p
(si)
m

|∆̄(si)
m |

≤

lim inf
m→∞

∑
n∈Sm∪{rm}

Kn(si, si)|∆̄(si)
m0 |

|∆̄(si)
m |

(lim inf
m→∞

log p
(si)
m

|∆̄(si)
m |

+ ϵ

)

+

1− lim inf
m→∞

∑
n∈Sm∪{rm}

Kn(si, si)|∆̄(si)
m0 |

|∆̄(si)
m |

(lim sup
m→∞

log p
(si)
m

|∆̄(si)
m |

+ ϵ

)
.

In fact, we can show that the coefficient of the convex combination has the following
estimate of lower bound:

lim inf
m→∞

∑
n∈Sm∪{rm}

Kn(si, si)|∆̄(si)
m0 |

|∆̄(si)
m |

≥ C > 0.

To show this we consider when ρ(K) = 1, |∆(sl)
m | = m+ 1 and thus

lim inf
m→∞

∑
n∈Sm∪{rm}

Kn(si, si)|∆̄(si)
m0 |

|∆̄(si)
m |

=
m0 + 1

m0 + 1 + n0 + 1
≥ m0 + 1

m0 + 1 + 2(m0 + 1)
=

1

3
= C.

For the ρ(K) > 1,

lim inf
m→∞

∑
n∈Sm∪{rm}

Kn(si, si)|∆̄(si)
m0 |

|∆̄(si)
m |

≥ lim inf
m→∞

Krm(si, si)|∆̄(si)
m0 |

|∆̄(si)
m |

≥ lim
m→∞

Krm(si, si)

ρ(K)rm
|∆̄(si)

m0 |
ρ(K)m0+P

lim inf
m→∞

ρ(K)rm+m0+P

|∆̄(si)
rm+m0+P |

≥ C.
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Hence, we have

lim sup
m→∞

log p
(si)
m

|∆̄(si)
m |

≤C

(
lim inf
m→∞

log p
(si)
m

|∆̄(si)
m |

+ ϵ

)

+ (1− C)

(
lim sup
m→∞

log p
(si)
m

|∆̄(si)
m |

+ ϵ

)
.

Because ϵ > 0 is arbitrary, it follows that lim supn→∞
log p

(si)
n

|∆̄(si)
n |

= lim infn→∞
log p

(si)
n

|∆̄(si)
n |

.
As for the second part, the proof remains the same as that in Theorem 3.6. □

4. Existence of Topological Entropy

Recall that the definitions of the topological and stem entropies collapse when-
ever G is a strict semigroup. Theorems 3.1 and 3.6 yield a class of finitely generated
semigroups on which the stem entropy of each tree shift exists, following the derived
results, this section is devoted to the existence of the topological entropy and the
relationship between the topological entropy and stem entropy. We demonstrate
the existence of the topological entropy for a class of tree shifts on G, and the topo-
logical entropy is identical to the stem entropy. The considered class of semigroups
contains but is not limited to the class of finitely generated free groups. For the
rest of this article, G = ⟨Sk|K⟩ is a finitely generated semigroup with primitive
matrix K.

Let A = (A1, A2, . . . , Ak) be a k-tuple of binary matrices indexed by A. Recall
that a Markov tree shift XA ⊆ AG is defined as

XA = {t ∈ AG : Ai(tg, tgsi) = 1 for all g ∈ G, |gsi| = |g|+ 1}.

The following theorem indicates that the topological entropy of a Markov tree shift
exists provided K has a full row. Moreover, the topological entropy is identical to
the stem entropy.

Theorem 4.1. Suppose K ∈ {0, 1}k×k satisfies
∑k

j=1 K(si, sj) = k for some
si ∈ Sk, and X is a Markov tree shift. Then the topological entropy of X exists and

h = lim
n→∞

log pn
|∆n|

= h(s).

Proof. Note that every n-block u ∈ Bn can be uniquely expressed as a (k+1)-tuple
(u1G , u|∆̄(s1)

n−1

, u|
∆̄

(s2)
n−1

, · · · , u|
∆̄

(sk)

n−1

), and thus pn ≤ |A|·
∏k

j=1 p
(sj)
n−1. As a consequence,

(10) lim sup
n→∞

log pn
|∆n|

≤ lim sup
n→∞

|A|
|∆n|

+

k∑
j=1

log p
(sj)
n−1

|∆̄(sj)
n−1|

|∆̄(sj)
n−1|
|∆n|

= h(s)

holds by applying Theorem 3.6. On the other hand, p
(si)
n ≤ pn holds naturally,

which further implies

(11) lim inf
n→∞

log pn
|∆n|

≥ lim inf
n→∞

log p
(si)
n

|∆n|
= lim inf

n→∞

log p
(si)
n

|∆̄(si)
n |

= h(si) = h(s).

The proof is finished by combining (10) and (11) above. □
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The theorem above asserts the existence of topological entropy of a Markov tree
shift on a Fibonacci-Cayley tree, which was revealed in [6].

Corollary 4.2 (See [6]). Suppose G is generated by S2 with K =

(
1 1
1 0

)
, and X is

a Markov tree shift. Then the topological entropy of X exists and can be calculated
via a system of recurrence equations.

A Markov tree shift XA on G is called a hom Markov tree shift if Ai = Aj for all
i, j. From the physical viewpoint, such a system is isotropic and homogeneous; in
other words, two symbols are forbidden to sit next to each other in all coordinate
directions once they are forbidden in some direction. The class of hom shift spaces
plays an important role in the investigation of physical systems. Suppose that the
matrix K has a constant row sum. The theorem below reveals that, not only the
topological entropy of a hom Markov tree shift exists, the stem entropy and the
topological entropy also coincide.
Theorem 4.3. Suppose m =

∑k
j=1 K(si, sj) =

∑k
j=1 K(si′ , sj) for every 1 ≤

i, i′ ≤ k and X = XA is a hom Markov tree shift. Then the topological entropy
exists and limn→∞

log pn

|∆n| = h(s).

Proof. Since m =
∑k

j=1 K(si, sj) =
∑k

j=1 K(si′ , sj) for every 1 ≤ i, i′ ≤ k and
A1 = A2 = · · · = Ak = A, it follows immediately that q

(si)
n;a = q

(sj)
n;a for every

si, sj ∈ Sk, for which we simply denote qn;a in the rest of the proof. Note that since
x

k
m is convex, the following inequality holds for every si ∈ Sk:

(p(si)n )
k
m = (

|A|∑
a=1

(qn;a)
m)

k
m

= (|A|
|A|∑
a=1

1

|A|
· (qn;a)m)

k
m

≤ |A|
k−m
m

|A|∑
a=1

(qn;a)
k

= |A|
k−m
m pn.

On the other hand, it can be deduced by applying Minkowski inequality that

(p(si)n )
k
m = (

|A|∑
a=1

(qn;a)
m)

k
m ≥

|A|∑
j=1

(qn;a)
k = pn.

By combining the inequalities above , it yields that (p(si)n )
k
m ≥ pn ≥ |A|

m−k
m (p

(si)
n )

k
m

and thus
log p

(si)
n

|∆̄(si)
n |

k
m |∆̄

(si)
n |

|∆n|
+

m− k

m

log|A|
|∆n|

=
log p

(si)
n

|∆̄(si)
n |

k
m |∆̄

(si)
n |

k
m (|∆̄(si)

n | − 1) + 1
+

m− k

m

log|A|
|∆n|

≤ log pn
|∆n|

≤ log p
(si)
n

|∆̄(si)
n |

k
m |∆̄

(si)
n |

|∆n|
=

log p
(si)
n

|∆̄(si)
n |

k
m |∆̄

(si)
n |

k
m (|∆̄(si)

n | − 1) + 1
.
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Since limn→∞
log p

(si)
n

|∆̄(si)
n |

is proved to be h(s) for all si ∈ Sk in Theorem 3.6, the proof
is finished. □

Example 4.4. A class of groups satisfying the assumption of Theorem 4.3 is the
Bethe lattice, for which the matrices K’s have each diagonal entry 0 and each non-
diagonal entry 1. For instance, the Bethe lattice of order 3 is provided in Figure
1.

An immediate application of Theorem 4.3 is that the topological entropy of a hom
Markov tree shift on a free group exists. Suppose that A = (A1, A2, . . . , Ak). We
denote by At = (At

1, A
t
2, . . . , A

t
k) the k-tuple of transpose matrices of A. Theorem

4.3 is further generalized to the following proposition.

Proposition 4.5. Let G = Fk be a free group of rank k. That is, G = ⟨S2k|K⟩
with K(si, sj) = 0 if and only if |i− j| = k. Suppose X = XA,At is a Markov shift
space over Fk with A1 = A2 = · · · = Ak = A indexed by a finite alphabet A. Then
the limit limn→∞

log pn

|∆n| exists and equals h(s).

Proof. For simplicity, we write q+n;a = q
(si)
n;a = q

(sj)
n;a , q−n;a = q

(s−1
i )

n;a = q
(s−1

j )
n;a , |∆̄(si)

n | =

|∆̄(s−1
i )

n | = |∆̄n| and |∆̄(si)+
n | = |∆̄(s−1

i )+
n | = |∆̄+

n | in the rest of the proof.
First, we claim that lim supn→∞

log q+n;a

|∆̄+
n | ≤ h(s) and that lim supn→∞

log q−n;a

|∆̄+
n | ≤

h(s). To show this, note that q+n;a ≤ p
(s1)
n−1 and thus log q+n;a

|∆̄+
n | ≤

log p
(s1)
n−1

|∆̄(s1)
n−1|

. The inequality
then holds by taking limit superior of both sides, and the same arguments apply to
q−n;a.

Now we claim that limn→∞
pn

|∆n| exists and equals h(s). Since it follows from
(10) that lim supn→∞

log pn

|∆n| ≤ h(s), it is left to show that lim infn→∞
log pn

|∆n| ≥ h(s).
Since p

(s1)
n =

∑
a∈A(q

+
n;a)

k · (q−n;a)k−1, there exists an ∈ A for each n such that
(q+n;an

)k · (q−n;an
)k−1 ≥ p(s1)

n

|A| . Hence, by applying Theorem 3.6 and the claim above,
for every ϵ > 0 there exists N ∈ N such that

q+n;an
, q−n;an

< e(h
(s)+ϵ)|∆̄+

n |,

and that

(q+n;an
)k · (q−n;an

)k−1 ≥ 1

|A|
p(s1)n > e(h

(s)−ϵ)|∆̄n|,

whenever n ≥ N . This implies

q−n;an
=

(q+n;an
)k · (q−n;an

)k−1

(q+n;an)
k · (q−n;an)

k−2

≥ e(h
(s)−ϵ)|∆̄n|−(h(s)+ϵ)|∆̄+

n |(2k−2)

= e(h
(s)−ϵ)[(2k−1)|∆̄+

n |−(2k−2)]−(h(s)+ϵ)|∆̄+
n |(2k−2)

= e−(2k−2)(h(s)−ϵ)e(h
(s)−(4k−3)ϵ)|∆̄+

n |.
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Hence,

pn;an
= (q+n;an

)k · (q−n;an
)k−1 · q−n;an

≥ e(h
(s)−ϵ)|∆̄n| · e−(2k−2)(h(s)−ϵ)e(h

(s)−(4k−3)ϵ)|∆̄+
n |

≥ e(h
(s)−(4k−3)ϵ)|∆̄n| · e−(2k−2)(h(s)−ϵ)e(h

(s)−(4k−3)ϵ)|∆̄+
n |

= e(h
(s)−(4k−3)ϵ)(|∆̄n|+|∆̄+

n |) · e−(2k−2)(h(s)−ϵ)

Hence, one obtains
lim inf
n→∞

pn
|∆n|

≥ lim inf
n→∞

pn;an

|∆n|
≥ h(s).

This finishes the proof. □

Using the same technique as above, one can also obtain a variation of Proposition
4.5 as follows.

Proposition 4.6. Suppose A is a finite alphabet with |A| ≤ 2k − 1. Let XA,At be
a Markov shift over Fk with A = (A1, A2, . . . , Ak). Then the topological entropy of
X exists and equals h(s).

Proof. For simplicity, we write |∆̄(si)| = |∆̄(s−1
i )| = |∆̄n| and |∆̄(si)+| = |∆̄(s−1

i )+| =
|∆̄+

n | in the rest of the proof.
By applying the argument in Proposition 4.5, one obtains that

(12) lim sup
log q

(si)
n;a

|∆̄(si)
n |

≤ h(s)

for every si ∈ S2k. Now we claim that limn→∞
pn

|∆n| exists and equals h(s). Since it
follows from (10) that lim supn→∞

log pn

|∆n| ≤ h(s), it is left to show that lim infn→∞
log pn

|∆n| ≥
h(s). Since p

(z)
n =

∑
a∈A

∏
w ̸=z−1 q

(w)
n;a for every z ∈ S2k, there exists an;z ∈ A for

each n such that
∏

w ̸=z−1 q
(w)
n;an;z ≥

p(z)
n

|A| . Hence, by applying Theorem 3.6 and (12),
for every ϵ > 0 there exists N ∈ N such that

q(w)
n;an;z

< e(h
(s)+ϵ)|∆̄+

n |,

and that ∏
w ̸=z−1

q(w)
n;an;z

≥ 1

|A|
p(z)n > e(h

(s)−ϵ)|∆̄n|,

for all z, w ∈ S2k and all n ≥ N . At this moment, it is noteworthy that the
restriction imposed on the dimension of Ai leads to the coincidence of some an;z1 =

an;z2 (z1 ̸= z2) by the pigeonhole principle, and thus K(z2, z
−1
1 ) = 1. These

two properties together imply that if u, v are admissible patterns in XA,At with
u1G = an;z1 = an;z2 = v1G , s(u) = ∆̄

(z1)
n , and s(v) = ∆̄

(z2)
n , then u with support

s(u) = ∆n, defined as follows, is also a admissible pattern:

ug :=

{
vg, if g = z−1

2 g′, |g| = |z−1
2 |+ |g′|;

ug, otherwise.
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As a consequence,

pn;an;z1
= q

(z−1
1 )

n;an;z2
·
∏

w ̸=z−1
1

q(w)
n;an;z1

,

and

q
(z−1

1 )
n;an;z1

=

∏
w ̸=z−1

2
q
(w)
n;an;z1∏

w ̸=z−1
1 ,w ̸=z−1

2
q
(w)
n;an;z1

≥ e(h
(s)−ϵ)|∆̄n|−(h(s)+ϵ)|∆̄+

n |(2k−2)

= e(h
(s)−ϵ)[(2k−1)|∆̄n|−(2k−2)]−(h(s)+ϵ)|∆̄+

n |(2k−2)

= e−(2k−2)(h(s)−ϵ)e(h
(s)−(4k−3)ϵ)|∆̄+

n |.

Combining all the results above, it follows that

pn;an = q
(z−1

1 )
n;an;z1

·
∏

w ̸=z−1
1

q(w)
n;an;z1

≥ e(h
(s)−ϵ)|∆̄n| · e−(2k−2)(h(s)−ϵ)e(h

(s)−(4k−3)ϵ)|∆̄+
n |

≥ e(h
(s)−(4k−3)ϵ)|∆̄n| · e−(2k−2)(h(s)−ϵ)e(h

(s)−(4k−3)ϵ)|∆̄+
n |

= e(h
(s)−(4k−3)ϵ)(|∆̄n|+|∆̄+

n |) · e−(2k−2)(h(s)−ϵ)

Hence, one obtains

lim inf
n→∞

pn
|∆n|

≥ lim inf
n→∞

pn;an;z1

|∆n|
≥ h(s).

This finishes the proof. □

5. Generalization of Mixing Property

Aside from the straightforward estimation of topological entropy in the previous
section, this section studies from an topological perspective the coincidence between
stem entropy and topological entropy. In fact, the exposition in the following is
inspired by [24, Proposition 3.1] and generalizes the idea of mixing property on hom
Markov tree shifts on a strict semigroup to that on finitely generated semigroup
expressed as G = ⟨Sk|K⟩. We begin with defining the following terms.

Definition 5.1. Let G = ⟨Sk|K⟩ be a finitely generated semigroup. Suppose
X = XA ⊆ AG is a Markov tree shift on G. A graph representation of X is
a directed graph G = (V,E) with vertex set V = A × Sk and with edge set
E = {((a, si), (b, sj)) ∈ V ×V : K(si, sj) = 1, Aj(a, b) = 1}.

(i) G is called strongly connected if for every (a, si), (b, sj) ∈ V there is a walk
of length N from (a, si) to (b, sj) in G (denoted by (a, si)

N−→→ (b, sj)) for
some N depending on (a, si) and (b, sj).

(ii) A vertex (a, si) ∈ V is called a pivot if there exist sj ∈ Sk and an integer
N ∈ N such that every (b, sj) ∈ V admits a walk (a, si)

N−→→ (b, sj).
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(0, s1)

(1, s1)

(0, s2)

(1, s2)

Figure 4. Graph representation of XA1,A2

Example 5.2. Suppose G = ⟨S2|K⟩ is associated with the matrix K =

[
1 1
1 0

]
and

A1 =

[
1 1
1 0

]
, A2 =

[
0 1
1 1

]
are the adjacency matrices for the shift space XA1,A2 ⊂ AG. Then, the graph
representation of XA1,A2 is defined as in Figure 4.

To see the definitions above are related to the mixing property, we prove the
following proposition.
Proposition 5.3. Suppose that XA ⊆ AG is a hom Markov tree shift, and G =
(V,E) is a graph representation of XA. Then,

(i) G is strongly connected if and only if A is irreducible.
(ii) G is strongly connected and contains a pivot if and only if A is primitive.

Proof. (i) It is not hard to see that A is irreducible if G is strongly connected, since
for (a, si), (b, si) ∈ V, there exists a walk (a, si)(a1, si1)(a2, si2) · · · (an−1, sin−1

)(b, si)
and thus aa1a2 · · · anb is a word admissible by A. We now show the converse, i.e.,
for (a, si), (b, sj) ∈ V, there exists a walk (a, si)

M−−→→ (b, sj). Since K is a primitive
matrix, there exists N such that for every n ∈ N and si, sj ∈ Sk, there is an ad-
missible word sisi1si2 · · · sin−1sj by K. On the other hand, since A is irreducible,
for every a, b ∈ A there exists an integer M ≥ N and an M -word aa1a2 · · · aN−1b
admissible by A. This results in a walk (a,si)(a1, si1) · · · (aM−1, siM−1

)(b, sj) in G.
This completes the proof.

(ii) First of all, we show that A is primitive if the adjacency matrix AG of
G is primitive. Indeed, since AG is primitive, there exists N such that for all
(a, si), (b, sj) and n ≥ N , there exists a admissible walk (a, si)

n−→→ (b, sj) in G. This
naturally yields a (n + 1)-word admissible by A which starts at a and terminates
at b.

Secondly, we show that G is strongly connected and contains a pivot provided
A is primitive. To this end, we show every (a, si) ∈ V is a pivot of G. Since K is a
primitive matrix, there exists an integer N1 such that for every sj ∈ Sk and every
n ≥ N1, there exists an (n + 1)-word admissible by K which starts from si and
terminates at sj . On the other hand, since A is primitive, there exists N2 ≥ N1

such that for every b ∈ A there is a admissible word aa1 · · · aN2−1b by A. This
implies for all n ≥ N2 there is a walk (a, si)(a1, si1) · · · (an−1, sin−1)(an, sin) in G.
This finishes the proof of our claim. Note since every (a, si) is a pivot, irreducibility
follows immediately.
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Finally, it remains to show that if G is strongly connected and contains a pivot,
then AG is primitive. It is also equivalent to show that G is strongly connected
and there exists (a, si) ∈ V and N ∈ N such that every n ≥ N admits a walk
(a, si)

n−→→ (a, si). Since strong connectedness follows immediately, it is left to show
the latter. Suppose (a, si) is a pivot such that there exist sj ∈ Sk and walks
(a, si)

N−→→ (bk, sj) for every bk ∈ A as follows:
(a, si)(a1,2, sl1,2) · · · (a1,N−1, sl1,N−1

)(a, sj),
(a, si)(a2,2, sl2,2) · · · (a2,N−1, sl2,N−1

)(b2, sj),
...

(a, si)(a|A|,2, sl|A|,2) · · · (a|A|,N−1, sl|A|,N−1
)(b|A|, sj).

Hence, the following are admissible words by A:
aa1,2 · · · a1,N−1a,
aa2,2 · · · a2,N−1b2,

...
aa|A|,2 · · · a|A|,N−1b|A|.

From these, we are able to construct a word of length n + 1 ≥ N + 1 with both
starting and terminating symbol a. For instance, when n = N +2, we may observe
a1,N−2a1,N−1a = bka1,N−1a for some 1 ≤ k ≤ |A| and thus aak,2 · · · ak,N−1bka1,N−1a
is an admissible word by A. This process can be done for N + 1 ≤ n ≤ 2N , and
further extension process for n > 2N is done by a proper concatenation with the
prefix aa1,2 · · · a1,Na. Now since K is a primitive matrix, we can also prove that for
every si ∈ Sk and any sufficiently large n ∈ N there is an (n + 1)-word admissible
by K which starts and terminates at si simultaneously. Combining these two facts
we are able to construct a walk (a, si)

n−→→ (a, si) for all sufficiently large n, and the
proof is completed. □

Next, we show that the mixing property in the sense of a Markov tree shift
results in the coincidence between the stem entropy and topological entropy.
Theorem 5.4. Let XA ⊆ AG be a Markov tree shift on G. Suppose G = (V,E)

is a graph representation of XA. Then the topological entropy h = limn→∞
log pn

|∆n|
exists and h = h(s) provided G admits a pivot and is strongly connected.

Proof. First, we show that lim infn→∞
p
(si)
n;a

|∆̄(si)
n |

= lim infn→∞
p
(sj)

n;b

|∆̄
(sj)
n |

for every si, sj ∈
Sk and a, b ∈ A. Suppose

lim inf
n→∞

log p
(si)
n;a

|∆̄(si)
n |

= min

{
lim inf
n→∞

log p
(sl)
n;c

|∆̄(sl)
n |

: sl ∈ Sk, c ∈ A

}
=: h

and

lim inf
n→∞

log p
(sj)
n;b

|∆̄(sj)
n |

= max

{
lim inf
n→∞

log p
(sl)
n;c

|∆̄(sl)
n |

: sl ∈ Sk, c ∈ A

}
=: h.

We show that h = h. To begin with, we gives an order on G so that we are able to
write {gi}Mi=1 = {g ∈ T : |g| = N} in the lexicographical order and introduce the
notation
p
(si)
N ;a;b1,··· ,bM := |{u ∈ A∆̄

(si)

N : u is accepted by t ∈ XA, ugi = bi,∀1 ≤ i ≤M}|.
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Since G is strongly connected, there exists a walk (a, si)
n−→→ (b, sj) in G. As a

consequence, there exists p
(si)
N ;a;b1,··· ,b,··· ,bm ≥ 1 and thus

p
(si)
N+n =

∑
b1,··· ,bM

p
(si)
N ;a;b1,··· ,bM p

(sl1 )

n;b1
p
(sl2 )

n;b2
· · · p(slM )

n;bM

≥ p
(si)
N ;a;b1,··· ,b,··· ,bM p

(sl1 )

n;b1
p
(sl2 )

n;b2
· · · p(sj)n;b · · · p

(slM )

n;bM

≥ p
(sl1 )

n;b1
p
(sl2 )

n;b2
· · · p(sj)n;b · · · p

(slM )

n;bM
.

Hence, it yields

lim inf
n→∞

log p
(si)
N+n

|∆̄(si)
N+n|

≥ lim inf
n→∞

log p
(sl1 )

n;b1

|∆̄(sl1 )
n |

|∆̄(sl1 )
n |

|∆̄(si)
N+n|

+ · · ·+
log p

(sj)
n;b

|∆̄(sj)
n |

|∆̄(sj)
n |

|∆̄(si)
N+n|

+ · · ·+
log p

(slM )

n;bM

|∆̄(slM )
n |

|∆̄(slM )
n |
|∆̄(si)

N+n|
.

Note that limn→∞
|∆̄(sl)

n |
|∆̄(sl)

N+n|
is positive for every sl ∈ Sk and limn→∞

|∆̄
(sl1

)

n |+···+|∆̄
(slM

)

n |

|∆̄
(slM

)

N+n |
=

1. It then follows that h ≥ h.
Next, we show that lim infn→∞

p
(si)
n;a

|∆̄(si)| = lim supn→∞
p
(si)
n;a

|∆̄(si)
n |

for every si ∈ Sk and
a ∈ A. Suppose (a, si) is a pivot in G. Then, there exist N ∈ N and sj ∈ Sk such
that every (c, sj) ∈ V appears in one of the boundary patterns b1, · · · , c, · · · , bM ,
and is thus counted in p

(si)
N ;a;b1,··· ,c,··· ,bM . On the other hand, it follows from the

claim above that for every ϵ > 0, there exists N ′ such that for every n ≥ N ′,sl ∈ Sk

and c ∈ A,

(13) log p
(sl)
n;c

|∆̄(sl)
n |

≥ h− ϵ.

Hence,

p
(si)
N+n;a =

∑
b1,··· ,bM

p
(si)
N ;a;b1,··· ,bM p

(sl1 )

n;b1
p
(sl2 )

n;b2
· · · p(slM )

n;bM

≥
∑

b1,··· ,bM

1

|A|
∑

c:(c,sj) appears in b1,··· ,bM

p
(si)
N ;a;b1,··· ,bM p

(sl1 )

n;b1
p
(sl2 )

n;b2
· · · p(slM )

n;bM
,

for every product in the first line is counted no more than |A| times in the second
summation in the second line. From equation (13), one may further derive

p
(si)
N+n;a ≥

1

|A|
∑
c

∑
b1,··· ,bM :

(c,sj) appears in b1,··· ,bM

p
(si)
N ;a;b1,··· ,bM p

(sl1 )

n;b1
p
(sl2 )

n;b2
· · · p(slM )

n;bM

≥ 1

|A|
∑
c

p(sj)n;c e
(h−ϵ)(−|∆̄

(sj)
n |+

∑
slm

|∆̄
(slm

)

n |)

=
1

|A|
p(sj)n e

(h−ϵ)(−|∆̄
(sj)
n |+

∑
slm

|∆̄
(slm

)

n |)
.
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The inequality above yields that

lim inf
n→∞

log p
(si)
N+n;a

|∆̄(si)
N+n|

≥ lim
n→∞

log p
(sj)
n

|∆̄(sj)
n |

lim
n→∞

|∆̄(sj)
n |

|∆̄(si)
N+n|

+ (h− ϵ) lim
n→∞

−|∆̄(sj)
n |+

∑
slm
|∆̄(slm )

n |

|∆̄(si)
N+n|

= h(sj) · lim
n→∞

|∆̄(sj)
n |

|∆̄(si)
N+n|

+ (h− ϵ) · lim
n→∞

−|∆̄(sj)
n |+

∑
slm
|∆̄(slm )

n |

|∆̄(si)
N+n|

.

It follows as a result that h(sj) = h = h(s), since limn→∞

∑
slm

|∆̄
(slm

)

n |

|∆̄(si)

N+n|
= 1,

limn→∞
|∆̄

(sj)
n |

|∆̄(si)

N+n|
> 0 and the righthand side of the inequality is a convex combi-

nation of h(sj) and h− ϵ.
We are now ready to prove the proposition. Since it follows from (10) that

lim supn→∞
log pn

|∆n| ≤ h(s), it is left to show that lim infn→∞
log pn

|∆n| ≥ h(s). For every
a ∈ A, there exist b1, b2, . . . bk ∈ A such that pn;a ≥

∏k
l=1 p

(s1)
n−1;bl

. It can be deduced
from above that

lim inf
n→∞

log pn
|∆n|

≥ lim inf
n→∞

log pn;a
|∆n|

≥ lim inf
n→∞

k∑
l=1

log p
(sl)
n−1;bl

|∆̄(sl)
n−1|

|∆̄(sl)
n−1|

|∆n−1|
= h(s).

The proof is then finished. □

The corollary below follows immediately from Proposition 5.3 and Theorem 5.4.

Corollary 5.5. If XA is a hom Markov tree shift, then the topological entropy h
exists and equals h(s) if A is primitive.

Finally, we show that the assumption in Theorem 5.4 is finitely checkable.

Proposition 5.6. Let XA be a Markov tree shift. Suppose G = (V,E) is a graph
representation of XA. It is finitely checkable whether G admits a pivot and whether
G is strongly connected.

Proof. Since G is strongly connected if and only if the adjacency matrix AG asso-
ciated with G is irreducible, it is clearly finitely checkable. To see the admittance
of pivot is also finitely checkable, we define the matrix An for all n ∈ Z+ as follows:

An((a, si), (b, sj)) =

{
1 if (AG)n((a, si), (b, sj)) = 1,

0 otherwise.

It is then clear that G admits a pivot if and only if there exist si, sj ∈ Sk, a ∈ A,
and n ∈ Z+ such that An((a, si), (b, sj)) = 1 for all b ∈ A. Since |{An : n ≥ 0}| ≤
2|V|2 and An is eventually periodic, there exist 0 ≤ N1 ≤ N2 ≤ 2|V|2 such that
AN1+n = AN2+n for all n ≥ 0. In other words, G admits a pivot if and only if there
exist si, sj ∈ Sk, a ∈ A, and 1 ≤ n ≤ 2|V|2 such that An((a, si), (b, sj)) = 1 for all
b ∈ A. This implies that admittance of a pivot is finitely checkable. □
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Appendix A. An Attempt toward the Existence of Topological
Entropy

This section presents an attempt toward the existence of topological entropy by
exploiting the composition of colors on the boundary of all n-blocks. Suppose XA

is given. We denote by a vector v ∈ Z|A||Sk|
+ the product

∏
(a,si)

(q
(si)
n;a )

v(a,si) . Note
that

W := {
∑

v∈Z|A||Sk|
+

rv · v : rv ∈ Z, rv ̸= 0 for finitely many v ∈ Z|A||Sk|
+ }

is a vector space with a basis Z|A||Sk|
+ . Define the linear transformation F : W →W

as

(F (v))(a,si) =

{
1, if v(a,si) > 0;

0, if v(a,si) = 0,

and the simplified representation F ∗(v) of F (v) as

F ∗(
∑
v

rv · v) =
∑
v

r′v · F (v),

where

r′v =

{
1, if rv > 0;

0, if rv = 0.

Define the shift transformation σ : W →W by

σ(v) = σ

 ∏
(a,si)

q(si)n;a

v(a,si)

 =
∏

(a,si)

∑
b

∏
j:K(i,j)=1

Ai(a, b)q
(sj)
b;n

Suppose x, y ∈ W . We denote x ⪰ y if every term v appearing in F ∗(x) admits a
term w appearing in F ∗(y) satisfying v(a,si) ≥ w(a,si) for every a ∈ A and every
si ∈ Sk.

Proposition A.1. limn→∞
log pn

|∆n| exists and equals h(s) if there exist N1, N2 ∈ N
and si ∈ Sk such that σN1(p

(si)
n ) ⪰ σN2(pn)

Proof. Denote M = |{g ∈ G : |g| = N1}|, x = σN1(p
(si)
n ) and y = σN2(pn). Since

x ⪰ y, every term v appearing in F ∗(x) admits a term ϕ(v) appearing in F ∗(y)
satisfying v(a,si) ≥ ϕ(v)(a,si) for every a ∈ A and every si ∈ Sk. In this proof, we
denote [n,v] for every v =

∏
(a,si)

(q
(si)
n;a )

v(a,si) ∈ W for an emphasis on the size of
the block.

Note that since limn→∞
log p

(si)
n

|∆̄(si)| = h(s), there exists

[n,vn] = (q
(sl1 )
n;an;1)

v(an;1,sl1
) · · · · · (q(slM )

n;an;M )
v(an;M,slM

)

appearing in x such that limn→∞
log[n,vn]

|∆̄(si)
n |

= h(s). Hence, for every ϵ > 0, there
exists N ∈ N such that

log[n,vn]

|∆̄(si)
n |

> h(s) − ϵ
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and that
log q

(sj)
n;b

|∆̄(sj)
n |

< h(s) − ϵ

for every n ≥ N , b ∈ A and sj ∈ Sk. Hence,

log q
(slm )
n;an;m

|∆̄(sj)
n |

(vn)(am,slm )

M
≥ (h(s) − ϵ)− (h(s) + ϵ)

M − (vn)(am,slm )

M
,

and thus
log q

(slm )
n;am

|∆̄(sj)
n |

≥ h(s) − 2Mϵ.

Now observe that
log pn
|∆n|

≥ ϕ([n,vn])

|∆n|
≥ h(s) − 2Mϵ,

for all n ≥ N . The proof is thus finished. □

Appendix B. Computation of Stem Entropy

In this section, we provide the pseudo codes for 1. computation for topological
entropy of Markov tree shift on the Cayley graph and 2. computation for stem
entropy of Markov tree shift, shown in Algorithm 1 and Algorithm 2 respectively.
In the following, we denote by ⊙ the entrywise product of vectors.

input : A = (A1, A2, · · · , Ad): d binary matrices of dimension k.
iter: maximum of iterations in execution
ϵ: threshold for convergence

output: h: approximation of entropy, where hn :=
logmaxa pn;a

|∆n| .

1 Function normalized_tree_entropy(A,iter,ϵ)
2 p̄0 = (p̄0;1, p̄0;2, · · · , p̄0;k)t ← (1, 1, · · · , 1)t;
3 r0 ← 1;
4 t0 ← log r0;
5 h0 ← t0/|∆0|;
6 for n ∈ {1, 2, · · · , iter − 1} do
7 p̄n = (p̄n;1, p̄n;2, · · · , p̄n;k)t ← (A1p̄n−1)⊙ · · · ⊙ (Adp̄n−1);
8 rn ← maxa p̄n;a;
9 p̄n ← p̄n/rn;

10 tn ← d · tn−1 + log rn;
11 hn ← tn/|∆n|;
12 if |hn − hn−1| < hn−1 · ϵ or hn < ϵ then
13 break;
14 end
15 end
16 return h

17 end
Algorithm 1: Topological entropy of hom Markov tree shift on the Cayley
graph
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Remark B.1. The idea behind Algorithm 1 is given as follows. Suppose{
pn = f(pn−1) := (A1pn−1)⊙ · · · ⊙ (Adpn−1)

p0 = (1, 1, · · · , 1)t .

It is shown (see for example [4]) that the above system is exactly the vector of the
number of blocks:

pn = (pn;1, pn;1, · · · , pn;k).
Let {rn > 0 : n ≥ 0} be a given sequence of positive real numbers. Define the
normalized system as {

p̄n = g(p̄n−1) :=
f(p̄n−1)

rn
,

p̄0 = (1/r0, 1/r0, · · · , 1/r0)t

It is noteworthy that the following equality holds:

pn = fn(p0)

= gn(p̄0) · r(0)d
n

r(1)d
n−1

· · · r(n)d
0

= p̄n · r(0)d
n

r(1)d
n−1

· · · r(i)d
0

Since rn is chosen to be the maximal element in pn in Algorithm 1, the maximal
element in p̄(i) is 1 and thus

(14) tn = logmax
a

pn;a = dn log r0 + dn−1 log r1 + · · ·+ d0 log rn,

and
hn =

logmaxa pn;a
|∆n|

.

In fact, if rn is defined as in the algorithm, then rn is a rational number and

h(XA) = lim
n→∞

logmaxa pn;a
dn+1/d− 1

=

∞∑
n=0

log rn ·
d− 1

dn+1
.(15)

In particular, if X(A,A,··· ,A) is a hom Markov tree shift with A an essential matrix
, i.e., for every b ∈ A there exists b ∈ A satisfying A(a, b) = 1, then |A|d ≥ rn ≥ 1
for all n ≥ 0 and

N∑
n=0

log rn ·
d− 1

dn+1
≤ h(XA) ≤

N∑
n=0

log rn ·
d− 1

dn+1
+

∞∑
n=N+1

d log|A| · d− 1

dn+1
.

Remark B.2. As an analogy of Algorithm 1, the numbers of blocks satisfy the
following recursive system.{

p
(sj)
n = (A1p

(s1)
n−1)

K(sj ,s1) ⊙ · · · ⊙ (Adp
(sd)
n−1)

K(sj ,sd)

p
(sj)
0 = (1, 1, · · · , 1)t.

In the same manner, given any positive sequence of {r(sj)n : n ≥ 0, sj ∈ G}, one
may define the normalized system as{

p̄
(sj)
n = (A1p̄

(s1)
n−1)

K(sj ,s1) ⊙ · · · ⊙ (Adp̄
(sd)
n−1)

K(sj ,sd)/r
(sj)
n

p̄
(sj)
0 = (1/r

(sj)
0 , 1/r

(sj)
0 , · · · , 1/r(sj)0 )t.
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input : K: binary matrix of dimension k.
A = (A1, A2, · · · , Ad): d binary matrices of dimension k.
iter: maximum of iterations in execution
ϵ: threshold for convergence

output: h(sj): approximation of entropy, where h
(sj)
n :=

logmaxa p
(sj)
n;a

|∆n| .

1 Function normalized_mctree_entropy(A,iter,ϵ)
2 for j ∈ {1, 2, · · · , d} do
3 p̄

(sj)
0 =

(
p̄
(sj)
0;1 , p̄

(sj)
0;2 , · · · , p̄(sj)0;k

)t
← (1, 1, · · · , 1)t;

4 r
(sj)
n ← maxa p̄

(sj)
n;a ;

5 t
(sj)
0 ← log r

(sj)
0 ;

6 h
(sj)
0 ← s

(sj)
0 /|∆̄(sj)

0 |;
7 end
8 for n ∈ {1, 2, · · · , iter − 1} do
9 for j ∈ {1, 2, · · · , d} do

10 p̄
(sj)
n =

(
p̄
(sj)
n;1 , p̄

(sj)
n;2 , · · · , p̄

(sj)
n;k

)t
←

(A1p
(s1)
n−1)

K(sj ,s1) ⊙ · · · ⊙ (Adp
(sd)
n−1)

K(sj ,sd);
11 r

(sj)
n ← 1;

12 p̄
(sj)
n =

(
p̄
(sj)
n;1 , p̄

(sj)
n;2 , · · · , p̄

(sj)
n;k

)t
← p̄

(sj)
n /r

(sj)
n ;

13 t
(sj)
n ← K(sj , :) ·

(
t
(s1)
n−1, · · · , t

(sd)
n−1

)
+ log r

(sj)
n ;

14 h
(sj)
n ← t

(sj)
n /|∆̄(sj)

n |;
15 end
16 if

∑d
j=1|h

(sj)
n − h

(sj)
n−1| <

∑d
j=1 h

(sj)
n−1 · ϵ or h

(sj)
n < ϵ then

17 break;
18 end
19 end
20 return

(
h(s1);h(sd); · · · ;h(sd)

)
21 end

Algorithm 2: Stem entropy of Markov tree shift

Denote by f = (f1, f2, · · · , fd) and g = (g1, g2, · · · , gd) the map pn−1
f→ pn and

the map p̄n−1
g→ p̄n, respectively. Similar to the above,

p(sj)
n = fj(f

n−1(p
(s1)
0 ,p

(s2)
0 , · · · ,p(sd)

0 ))(16)

= gj(g
n−1(p̄

(s1)
0 , p̄

(s2)
0 , · · · , p̄(sd)

0 )) · exp(t(sj)n−1)(17)
= p̄(sj)

n · exp(t(sj)n ),(18)

where max p̄
(sj)
n = 1 and

(19) t(sj)n = logmax
a

p(sj)n;a .
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A1 A2 stem entropy topological entropy iteration
[0, 1; 1, 1] [1, 1; 1, 0] 0.1261881372008 0.1261881372008 37
[1, 1; 1, 0] [1, 1; 1, 0] 0.2332621211030 0.2332621211030 34

[0, 1, 0; 1, 0, 1; 0, 1, 0] [0, 1, 1; 1, 0, 0; 0, 1, 1] 0.1681464340595 0.1681464340595 36
Table 1. Numerical experiments on the stem entropy of
XA1,A2,At

1,A
t
2

over the free group (log is computed with base 10.)

A1 A2 stem entropy topological entropy iteration
[0, 1; 1, 1] [1, 1; 1, 0] 0.1261881372008 0.1261881372008 37
[1, 1; 1, 0] [1, 1; 1, 0] 0.2332621211030 0.2332621211030 34

[0, 1, 0; 1, 0, 1; 0, 1, 0] [0, 1, 1; 1, 0, 0; 0, 1, 1] 0.1681464340595 0.1681464340595 36
Table 2. Numerical experiments on the stem entropy of
XA1,A2,At

1,A
t
2

over the free group (log is computed with base 10.)

A1 A2 stem entropy topological entropy iteration
[1, 1; 1, 0] [1, 1; 1, 0] 0.2178219813166 0.2178219813166 82
[0, 1; 1, 1] [0, 1; 1, 1] 0.2178219813166 0.2178219813166 82
[0, 1; 1, 1] [1, 1; 1, 0] 0.1267559612313 0.1267559612313 73
[1, 1; 1, 0] [0, 1; 1, 1] 0.1267559612313 0.1267559612313 73

Table 3. Numerical experiments on the stem entropy of XA1,A2

over Fibonacci-Cayley tree generate by Sk, where K = [1, 1; 1, 0]
(log is computed with base 10.)

Hence

h(sj)
n =

logmaxa p
(sj)
n;a

|∆̄(sj)
n |

,

which tends to the stem entropy of XA.

The experiments are done with mpmath library of python under the following
configuration: the precision digits for floating-point number dps=5000, the thresh-
old ϵ = 1E − 50, and the relations K = (1, 1, 0, 1; 1, 1, 1, 0; 0, 1, 1, 1; 1, 0, 1, 1).
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