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Abstract. This article explores the topological entropy and topological se-
quence entropy of hom tree-shifts on unexpandable trees. Regarding topo-

logical entropy, we establish that the entropy, denoted as h(TX) on an un-

expandable tree, equals the entropy h(X) of the base shift X when X is a
subshift satisfying the almost specification property. Additionally, we derive

some fundamental properties such as entropy approximation and the dense-

ness of entropy for subsystems. Concerning topological sequence entropy, we
show that the set of sequence entropies of hom tree-shifts with a base shift

is generated by an irreducible matrix A, forming a subset of logN. Precisely,

these entropies correspond to the logarithms of the largest cardinalities of the
periodic classes of A.
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1. Introduction

Let A be a finite set with |A| ≥ 2, and let T be a tree, which is a countable graph
that is locally finite, without loops, and has a root ϵ. A tree T can also be defined
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Figure 1. (a) The figure of T 2 and (b) the figure of TM .

as the Cayley graph of the semigroup with d generators, denoted as g1, . . . , gd. Let
M ∈ {0, 1}d×d, and the associated Markov-Cayley tree TM is defined as follows:

TM = {ϵ} ∪ {gi1 · · · gin : n ≥ 1, M(ij , ij+1) = 1 ∀j = 1, . . . , n− 1}.

For i ∈ N ∪ {0}, we denote by Ti the set of vertices in T with length i, where the
length of a vertex g ∈ T is the number of edges from ϵ to g. For any tree T , we
associate the number

γT := lim
n→∞

|Tn+1|
|Tn|

≥ 1,

which is called the expanding number of the tree T whenever the limit exists. We
call T expandable if γT > 1 and unexpandable if γ = 1. It is worth noting that
the conventional d-tree T d, the free semigroup with d generators (see Figure 1 (a)

for T 2) is expandable. Furthermore, the tree T = TM with M =

[
1 1
0 1

]
is an

unexpandable tree (see Figure 1 (b) for TM ).
Let X ⊆ AN be an N shift. The tree-shift associated with X (or hom tree-shift

with base shift X, tree-shift for short) is defined as

TX = {x ∈ AT : (xgi1gi2 ···gij )j∈N∪{0} ∈ X for any (gi1gi2 · · · gij )j∈N∪{0}},

where the subshift X is called the base shift of TX [36]. The term ‘hom’ indicates
that the rule X on every infinite path (starting from ϵ) of the tree T is the same.
Suppose the base shift X = XA is a subshift of finite type (SFT) with adjacency
matrix A, then we simply write TA := TXA

, and call it a tree-SFT. The tree-shift
TA can also be characterized as below.

TA = {x ∈ AT : Ax(g),x(h) = 1 ∀g, h ∈ T and h = ggj for 1 ≤ j ≤ d}.

The tree-shift TX has received extensive attention in recent years [1, 2, 14, 35,
36, 5, 4] for the following three reasons: (a) such a shift has an intermediate
class of symbolic dynamics between N shifts and Nd shifts [1]; (b) TX exhibits
very interesting phenomena which are different from Nd shifts for d ≥ 2 [7] since
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the amenability1 is no longer true for T ; (c) TX is a type of physical model in
statistical physics that has attracted a lot of attention over the past two decades,
e.g., regarding the large deviation principle [15, 16, 17], and the existence of the
Gibbs states [39, 21].

Let X ⊆ AN and TX be the associated tree-shift, the entropy of TX is defined as

(1) h(TX) = lim sup
n→∞

log |P(∆n, TX)|
|∆n|

,

where ∆n = ∪n
i=0Ti and P(∆n, TX) : AT → A∆n is the canonical projection of TX

into the subtree ∆n. Precisely,

P(∆n, TX) =
{
(xg)g∈∆n

∈ A∆n : x ∈ TX
}
.

The limit (1) exists for tree-shifts defined on T = T 2 [35], and also exists for a larger
class of tree-shifts defined on Markov-Cayley trees [9]. The main purpose of this
article is to establish the theory of entropy for tree-shifts defined on unexpandable
trees. Furthermore, we provide a comparison of entropies for tree-shifts defined
on both expandable and unexpandable trees. Note that most of all results in this
paper do not apply to expandable trees. In what follows, we assume that the tree
T has no leaves. Equivalently, this means that each ray from the root ϵ in T has
infinite cardinality. Below is a summary of our findings from this investigation.

1.1. Relations of entropy between tree-shifts and base shifts. Suppose T =
T 2, Petersen and Salama [35] prove that h(TX) ≥ h(X) if X is an irreducible SFT
([35, Theorem 3.3]), and Ban et al. [8] prove that under the same assumptions as
[35, Theorem 3.3], we have h(TX) = h(X) if and only if the adjacency matrix A of
X has equal row sums; that is, maxi

∑
j Aij = minj

∑
j Aij . For tree-shifts defined

on an unexpandable tree T , the following two results provide sufficient conditions
to ensure when the entropies for h(TX) and h(X) coincide.

Theorem 1.1. Suppose T is an unexpandable tree and limn→∞ |Tn| < ∞. If
X ⊆ AN is a subshift, then

(2) h(TX) = h(X).

Recall that a subshift X ⊆ AN satisfies the almost specification property if

∃c > 0,∀u, v ∈ L(X),∃w ∈ L(X) with |w| ≤ c such that uwv ∈ L(X),

where L(X) = ∪∞
n=1P([1, n], X) and P([1, n], X) = {(xi)

n
i=1 : x ∈ X}. For a general

unexpandable tree T , we have the following results.

Theorem 1.2. Suppose T is an unexpandable tree. Then for any subshift X ⊆ AN,
we have h(TX) ≤ h(X). Furthermore, if X ⊆ AN is a subshift satisfying the almost
specification property, then the equality (2) holds true.

Let M =

[
1 0
0 1

]
and X = XG be the golden-mean shift. Then by Theorem 1.1,

we have h(T M
X ) = log 1+

√
5

2 = h(X). If M =

[
1 1
0 1

]
, then h(T M

X ) = log 1+
√
5

2 =

h(X) by Corollary 2.1.

1That is, |∆n\∆n−1| / |∆n| does not tend to 0 as n → ∞, where ∆n = ∪n−1
i=0 Ti. For a deeper

discussion of the amenability of a group we refer the reader to [14].
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We suspect that the equality (2) holds true for any tree-shift defined on an un-
expandable tree. However, our approach does not work under these circumstances.
We list it as an open problem.

Problem 1. Let T be an unexpandable tree. For any tree-shift TX defined on T ,
we have h(TX) = h(X).

1.2. Fundamental properties of entropy. Suppose T = T 2 and TA is a tree-
SFT defined on T . For a ∈ A, we define

Pa(∆n, TX) =
{
(xg)g∈∆n

∈ A∆n : x ∈ TX and xϵ = a
}
,

and denote

ha(TA) := lim sup
n→∞

log |Pa(∆n, TA)|
|∆n|

.

Petersen and Salama ([35, Proposition 3.1]) prove that if A is an irreducible 0-1
matrix, then for all a, b ∈ A, we have

ha(TA) = hb(TA) = h(TA).

However, the authors also show that ([35, Example 3.2]) there exists an irreducible
A such that

lim inf
n→∞

log |Pa(∆n, TA)|
|∆n|

< ha(TA) = h(TA) for all a ∈ A.

That is, the limit log|Pa(∆n,TA)|
|∆n| does not generally exist in this circumstance. Nev-

ertheless, if A is primitive, then the limit in the definition of ha(TA) exists and

ha(TA) = h(TA).

Suppose T is unexpandable; we prove that for any irreducible SFT X, and for all
a ∈ A, the limit

lim
n→∞

log |Pa(∆n, TX)|
|∆n|

exists and is equal to h(TX) (Theorem 1.3 (1)). This result is new and quite different
from the case where T is expandable.

On the other hand, suppose A is a reducible matrix with irreducible components
A1, A2, . . . , Aq. The equality (3) is a well-known result for an N SFT ([33, Theorem
4.4.4])

(3) h(XA) = max
1≤i≤q

h(XAi),

where XB is the N SFT and B is the corresponding adjacency matrix. For T = T 2,
Ban et al. ([7, Theorem 3.2]) reveal that equality (3) is not generally true, i.e.,
h(TA) ̸= max1≤i≤q h(TAi

). However, Theorem 1.3 (2) below shows that (3) holds
for every tree-SFT defined on the unexpandable tree T .

Theorem 1.3. Suppose T is an unexpandable tree, we have the following:

(1) If X is an irreducible SFT, then we have the limit in the definition of
ha(TX) exists and is equal to h(TX) for all a ∈ A.

(2) Equality (3) holds for tree-SFTs defined on T . That is,

h(TA) = max
1≤i≤q

h(TAi
).
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1.3. Possible values and denseness of entropy of the subsystems. Under-
standing the possible values of the entropy for N SFTs or Nd SFTs is a critical and
significant problem in the fields of dynamical systems and statistical physics, e.g.,
the hard-square model [11] and the ice model in N2 [30].

For N SFTs, it is known that the set {h(X) : X ⊆ AN is a mixing SFT} is the
logarithm of the numbers in the spectral radii of aperiodic non-negative integer

matrices [31], and the set {h(X) : X ⊆ ANd

is an SFT} (d ≥ 2) is the class of
non-negative right recursively enumerable numbers [23]. Desai [18] proved that any
Nd SFT (resp. sofic) X with h(X) > 0 contains a family of Nd subSFTs (resp.
subsofics) with entropies dense in the interval [0, h(X)]. Such a result sharpened an
earlier result of Quas and Trow [37]. Combining the above facts implies that the set
of possible entropies of Nd SFTs (or sofic shifts) is dense in [0,∞). Recently, Bland
et al. [12] proved that for any countable amenable group G, if X is a G-SFT with
positive topological entropy h(X) > 0, then the SFT subsystems of X are dense in
the interval [0, h(X)].

However, for T = T 2, Ban et al. ([10, Theorem 2.1]) proved that

{h(TX) : X is an SFT and TX is defined on T} ∩ (0,
log 2

2
) = ∅,

where S stands for the closure of the set S. This means the set of possible values of
the set {h(TX) : X is a SFT} is constrained. For tree-SFTs defined on unexpand-
able trees, we have the following result.

Theorem 1.4. Under the same assumptions of Theorem 1.2, we have the following:

(1) Suppose TX is a tree-SFT with h(TX) > 0, then the set of entropies of
tree-subSFTs of TX is dense in [0, h(TX)];

(2) the following equality holds true.

{h(TX) : X is an SFT} = [0,∞).

Theorem 1.4 demonstrates that the structure of entropies of tree-shifts defined
on unexpandable trees is similar to the one-dimensional case, as we mentioned in
the preceding paragraph.

1.4. Perturbations of the entropy. Let X ⊆ AZ be a Z SFT, and w an admis-
sible finite block. We denote by Xw the new SFT by adding w to the forbidden
set. Lind [32] proves that for an irreducible N SFT X with h(X) > 0, there exist
CX , DX > 0 and NX ∈ N such that for any n ≥ NX and any admissible block
w ∈ A[1,n],

CX

exp(h(X)n)
< h(X)− h(Xw) <

DX

exp(h(X)n)
.

Pavlov ([34, Theorem 1.2]) extends the above result to Zd SFTs for d ≥ 2. He
proves that for any strongly irreducible Zd SFT X with d ≥ 2 and |X| > 1, there
exist CX , DX > 0, AX , BX , and NX ∈ N such that for any n > NX and any

admissible w ∈ A[1,n]d , we have

CX

exp(h(X) (n+AX)
d
)
< h(X)− h(Xw) <

DX

exp(h(X) (n+BX)
d
)
.

For a tree-SFT defined on an unexpandable tree, we have the following result.
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Theorem 1.5. Suppose T is an unexpandable tree and TA is a tree-SFT with
irreducible A. If h(XA) > 0, there exist CX , DX > 0 and NX ∈ N such that for
any admissible block w ∈ A[1,n] in X, we have

CX

exp(h(TX)n)
≤ h(TX)− h(TXw

) ≤ DX

exp(h(TX)n)
.

1.5. Topological sequence entropy. The notion of sequence entropy was first
introduced by Kushnirenko [29], and is invariantly useful to characterize the mixing
properties of measurable dynamical systems [25, 20, 38, 13, 3, 22, 24]. Suppose
f ∈ C(X) and X is a compact metric space. Let S = {sn}∞n=1 be a sequence of
natural numbers, and α an open cover of X. Define f−1α = {f−1A : A ∈ α}, and
define

hS
top(f, α) = lim sup

n→∞

1

n
logN(f−s1α ∨ · · · ∨ f−snα),

where N(α) is the minimum cardinality of a subcover of α and α∨β = {A∩B : A ∈
α and B ∈ β}. The topological sequence entropy of f with respect to S = {sn}∞n=1

is defined by

hS
top(f) = sup

α∈OC(X)

hS
top(f, α),

where OC(X) is the collection of all finite open covers of X. Let h∞
top(f)

2 be the
supremum of the topological sequence entropies of f over all subsequences of N,
and H∞(X) = {h∞

top(f) : f ∈ C(X)}. It is known [26, 27] that

(4) H∞(X) ⊆ {∞, 0, log 2, log 3, . . .}.

If X is a finite tree or the unit circle S1, then H∞(X) = {∞, 0, log 2}. Related
results can also be found in [41, 19, 40, 28]. It is interesting to note that the
preceding setup and results are applied to an N shift without any difficulty.

Regarding tree-shifts defined on T = T 2, Ban et al. [6] introduce an analogous
definition for topological sequence entropy using the concept of the complete prefix
code, as detailed in Section 2. Suppose C = {Ci}∞i=0 is a collection of CPCs3 and
TX ⊆ AT is a tree-shift, we define the topological sequence entropy of TX with
respect to C (written as hC

top(TX)) as

(5) hC
top(TX) = lim sup

n→∞

log
∣∣P(∆C

n, TX)
∣∣

|∆C
n|

,

where ∆C
n := ∪n−1

i=0 Ci and |·| denotes the cardinal number of the set. Let CF =
{C = {Ci}∞i=0 : Ci be a flat CPC for all i ∈ N∪{0}}. It is worth pointing out that a
collection of flat CPCs C = {Ci}∞i=0 is the collection {Tsi}∞i=0 for some subsequence
{si}∞i=0 of N∪ {0}. In [6], the authors prove that there exists a matrix A such that

sup
C∈CF

hC
top(TA) ∈ (log 4, log 5).

The result is different from the previous result of (4). However, we have the follow-
ing result for tree-shifts defined on an unexpandable tree.

2The value h∞
top(f) is also known as the maximal pattern entropy of f , introduced by Huang

and Ye [26]. We refer the reader to [26] or [27] for more details and a complete bibliography.
3The sequence C = {Ci}∞i=0 symbolizes the sequence S = {sn}∞n=1 in N shifts.
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Theorem 1.6. Under the same assumptions as Theorem 1.2. Let

H∞(T ) =

{
sup

C∈CF

hC
top(TA) : A is an irreducible matrix

}
.

Then H∞(T ) = {0, log 2, log 3, . . .}.

The rest of this article is organized as follows. The proofs of Theorems 1.1 and
1.2 are provided in Section 2.1, the proofs of Theorems 1.3, 1.4 and 1.5 are presented
in Section 2.2. The proof of Theorem 1.6 is outlined in Section 2.3. Finally, we
conclude in Section 3.

2. Proofs of theorems

In this section, we present the proofs of theorems that are stated in Section 1.
We assume that each ray in T has infinite cardinality.

2.1. Proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. By Theorem 1.2, we have h(TX) ≤ h(X). Now, we aim to
show that h(TX) ≥ h(X). Since limn→∞ |Tn| < ∞, we have limn→∞ |Tn| = c for
some constant c. As |Tn| are positive integers, we have c ∈ N. The existence of the
limit implies that N ∈ N exists such that |Tn| = c for all n ≥ N . Fix a large number
n ≥ N . By the pigeonhole principle, there is a pattern w ∈ P ([1, N + 1], X) of

length N + 1 with at least |P([1,n+1],X)|
|P([1,N+1],X)| continuations to legal patterns of length

n+ 1. Now, decorating the first N + 1 levels (∆N ) of the tree with the pattern w,

there are at least
(

|P([1,n+1],X)|
|P([1,N+1],X)|

)c

different ways to continue this to a decoration

of ∆n. That is,

|P (∆n, TX)| ≥
(

|P ([1, n+ 1], X)|
|P ([1, N + 1], X)|

)c

.

Then, we have

log |P (∆n, TX)|
|∆n|

≥
log

(
|P([1,n+1],X)|
|P([1,N+1],X)|

)c

c(n+ 1)

=
log |P ([1, n+ 1], X)|

n+ 1
− log |P ([1, N + 1], X)|

n+ 1
.

Taking n → ∞, we have h(TX) ≥ h(X). The proof is complete. □

Proof of Theorem 1.2.
1. We first prove that if T is an unexpandable tree, then h(TX) ≤ h(X). Let
ai = |Ti| − |Ti−1| for all i ≥ 1 and a0 := |T0| = 1. For n ≥ 1, the set ∆n can
be decomposed in the following manner. First, choose an arbitrary path from the
root to a vertex in Tn, represented by the interval [1, n + 1]. Similarly, choose a1
paths of type [1, n] from T1 to Tn, avoiding the path chosen in the previous step.
Proceeding inductively, we obtain a partition of ∆n into an−i+1 paths of type [1, i]
with 1 ≤ i ≤ n+ 1. In this notation,

∆n =

n+1⊔
i=1

an−i+1⊔
j=1

[1, i].
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We have

|P (∆n, TX)| ≤
n+1∏
i=1

|P ([1, i], X)|an−i+1 .

Then,

(6)

log |P (∆n, TX)|
|∆n|

≤
∑n+1

i=1 an−i+1 log |P ([1, i], X)|
|∆n|

=

∑n+1
i=1 an−i+1 log |P ([1, i], X)|∑n+1

i=1 an−i+1i
.

Fix an ϵ > 0, since limi→∞
log |P([1,i],X)|

i = infi≥1
log |P([1,i],X)|

i = h(X), there exists
an N > 0 such that for i ≥ N ,

(7) log |P ([1, i], X)| ≤ i (h(X) + ϵ) .

Then, by (6) and (7), we have

(8)

log |P (∆n, TX)|
|∆n|

≤
∑n+1

i=1 an−i+1 log |P ([1, i], X)|∑n+1
i=1 an−i+1i

=

∑N
i=1 an−i+1 log |P ([1, i], X)|∑n+1

i=1 an−i+1i
+

∑n+1
i=N+1 an−i+1 log |P ([1, i], X)|∑n+1

i=1 an−i+1i

≤
∑N

i=1 an−i+1 log |A|N∑n+1
i=1 an−i+1

+

∑n+1
i=N+1 an−i+1i (h(X) + ϵ)∑n+1

i=N+1 an−i+1i

= N log |A|
∑n

i=n−N+1 ai∑n
i=0 ai

+ h(X) + ϵ.

Since T is an unexpandable tree, i.e., γT = 1, we have that for such N > 0,

lim
n→∞

|Tn−N+1|
|Tn|

= 1.

Thus,

(9) lim
n→∞

∑n
i=n−N+1 ai∑n

i=1 ai
= 0.

Combining (8) and (9), we have

lim sup
n→∞

log |P (∆n, TX)|
|∆n|

≤ h(X) + ϵ.

Since ϵ is arbitrary, we have

lim sup
n→∞

log |P (∆n, TX)|
|∆n|

≤ h(X).

2. We prove that if X is a subshift satisfying the almost specification property, then
h(TX) ≥ h(X). Let c be the almost specification number of X. That is,

∀u, v ∈ L(X),∃w ∈ L(X) with |w| ≤ c such that uwv ∈ L(X).

Recall that for n ≥ 1, the set ∆n can be decomposed into an−i+1 paths of type [1, i]
with 1 ≤ i ≤ n+ 1. Given a path of type [1, i] with i ≥ c and a word v ∈ L(X) of
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length i− c, we can choose (due to almost specification) a word w with |w| = d ≤ c
such that the decoration of [1, i] can start with wv. By the pigeon hole principle:

Out of the P([1, i− c], X) legal words of length i− c, at least |P([1,i−c],X)|
c can start

at the same position (d) and thus induce different decorations on [1, i]. Thus, for
n ≥ c, the number of patterns on ∆n is greater than or equal to the product of the
numbers of patterns on [1, i] (c+ 1 ≤ i ≤ n+ 1). That is,

(10)

n+1∏
i=c+1

(
|P ([1, i− c], X)|

c

)an−i+1

≤ |P (∆n, TX)| .

Then,

log |P (∆n, TX)|
|∆n|

≥
∑n+1

i=c+1 an−i+1 log |P ([1, i− c], X)|
|∆n|

− |Tn| log c
|∆n|

=

∑n+1
i=c+1 an−i+1 log |P ([1, i− c], X)|∑n+1

i=1 an−i+1i
− |Tn| log c

|∆n|

=

∑n+1
i=c+1 an−i+1 log |P ([1, i− c], X)|∑c
i=1 an−i+1i+

∑n
i=c+1 an−i+1i

− |Tn| log c
|∆n|

≥
∑n+1

i=c+1 an−i+1 log |P ([1, i− c], X)|
c
∑n+1

i=1 an−i+1 +
∑n+1

i=c+1 an−i+1(i− c)
− |Tn| log c

|∆n|
.

Since γT = 1, we have

lim
n→∞

c
∑n+1

i=1 an−i+1∑n+1
i=c+1 an−i+1(i− c)

= lim
n→∞

cTn

Tn−c + Tn−1−c + · · ·+ T1 + T0
= 0.

Hence, taking n → ∞, we obtain that

lim inf
n→∞

log |P (∆n, TX)|
|∆n|

≥ lim inf
n→∞

∑n+1
i=c+1 an−i+1 log |P ([1, i− c], X)|

c
∑n+1

i=1 an−i+1 +
∑n+1

i=c+1 an−i+1(i− c)

= lim inf
n→∞

∑n
i=c+1 an−i+1 log |P ([1, i− c], X)|∑n

i=c+1 an−i+1(i− c)

≥ inf
i≥1

log |P ([1, i], X)|
i

= h(X).

Then, combining 1., we have h(TX) = h(X). The proof is complete. □

We recall that a shift space is termed a coded system if it can be presented by an
irreducible directed graph (with a countable number of vertices) whose edges are
labeled by symbols from a finite alphabet A. In this context, ”presented” signifies
that the shift space is the closure in AN∪{0}, serving as labels for infinite paths in
the graph. It is well known that X being a coded system equivalent to X being
the closure of the set of sequences obtained by freely concatenating the words (or
generators) in a (possibly infinite) list of words over a finite alphabet ([33, Section
13.5]). Given that irreducible SFTs and coded systems with finite generators satisfy
the almost specification property, we obtain the following result.

Corollary 2.1. If X ⊆ AN is an SFT or a coded system with finite generators,
then h(TX) = h(X).
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Proof.
1. Let X be an SFT with the adjacency matrix A. Suppose A1, . . . , Ak are the
irreducible components of A, and 1 ≤ q ≤ k is the integer such that ρ(Aq) =
max1≤i≤k ρ(Ai), where ρ(A) denotes the maximum eigenvalue of the matrix A. We
aim to prove that h(TA) = log ρ(Aq). Note that h(TAq

) ≤ h(TA) because TAq
⊆ TA.

Since Aq is irreducible, the subshift X with the adjacency matrix Aq satisfies the
almost specification property. By Theorem 1.2, we have h(TAq ) = h(Aq) and thus
h(TA) ≥ h(Aq). On the other hand, we have h(TA) ≤ h(A) by Theorem 1.2. Since
h(A) = max1≤i≤k ρ(Ai) = ρ(Aq) = h(Aq), we then have h(TA) ≤ h(Aq). The proof
is complete.
2. If X is a coded system with finite generators, then the proof is easily attained by
Theorem 1.2 because X satisfies the almost specification property. □

2.2. Proofs of the Theorems 1.3, 1.4 and 1.5.

Proof of Theorem 1.3.
1. Since for any a ∈ A,

Pa (∆n, TX) ⊆ P (∆n, TX) ,

we have

|Pa (∆n, TX)| ≤ |P (∆n, TX)| .
Thus, ha(TX) ≤ h(TX) = h(X) by Corollary 2.1. It remains to show that ha(TX) ≥
h(X). Since X is an irreducible SFT, by the similar argument of Theorem 1.2, we
have ha(TX) ≥ h(X). Thus, ha(TX) = h(X) = h(TX). The limit of the definition
defining ha(TX) exists.
2. The proof is obtained directly from Corollary 2.1. □

It is worth mentioning that the proof of Theorem 1.3 (1) also works if the shift
X satisfies almost specification property.

In order to prove Theorem 1.4, we need the following theorem.

Theorem 2.2 ([18, Theorem 3.3]). Let X be an SFT with h(X) > 0. Then there
exists a family of SFT subsystems of X whose entropies are dense in [0, h(X)].

Proof of Theorem 1.4.
1. Since h(TX) > 0 and X is an SFT, we have h(X) = h(TX) > 0 by Corollary 2.1.
Since h(X) > 0 and X is an SFT, there exists a set {Xi : i ∈ N} of subSFT of X
such that {h(Xi) : i ∈ N} is dense in [0, h(X)] by Theorem 2.2. Since Xi is an SFT,
then by Corollary 2.1 again, we have h(TXi

) = h(Xi). This implies {h(TXi
) : i ∈ N}

is dense in [0, h(TX)]. Note that TXi
⊆ TX is a tree-subSFT for all i ∈ N. The

proof is complete.
2. By Corollary 2.1, we have h(A) = h(TA). Then, the proof follows immediately
from the corresponding (well-known) result for 1-dimensional SFTs. □

Proof of Theorem 1.5. The proof is clearly obtained by Corollary 2.1 and [32, The-
orem 3], which are stated in Section 1. □

2.3. Proof of the Theorem 1.6. In order to prove Theorem 1.6, the following
definitions are needed. Let C = {Ci}∞i=0 be a sequence of finite subsets of T . We say
that Ci is a complex prefix code (CPC) on T if, for every ray R ⊆ T , the cardinality
|R∩Ci| of R∩Ci is equal to 1. We say a CPC Ci is flat if every member belongs to
C having the same length. For a sequence of flat CPCs C = {Ci}∞i=0, the topological
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sequence entropy hC
top(TX) is defined in (5). We also define the topological surface

entropy by

hL
top(TX) = lim sup

n→∞

log |P (Tn, TX)|
|Tn|

.

The following lemma is a general version of [6, Propositions 3.2 and Corollary 3.3].
The proof of the lemma is already shown in [6], but for the self-containment of this
article, we provide the proof here.

Lemma 2.3. Let TX be a hom tree-shift with limn→∞ |Tn| = ∞. Then,

sup
C∈CF

hC(TX) = hL
top(TX).

Proof. We first prove that hC(TX) ≤ hL
top(TX) for all C ∈ CF . Since∣∣P (

∆C
n, TX

)∣∣ ≤ n−1∏
i=0

|P (Ci, TX)| and
∣∣∆C

n

∣∣ = ∣∣∪n−1
i=0 Ci

∣∣ = n−1∑
i=0

|Ci| ,

then for all n ≥ 0,

log
∣∣P (

∆C
n, TX

)∣∣
|∆C

n|
≤

∑n−1
i=0 log |P (Tsi , TX)|∑n−1

i=0 |Tsi |
,

where si ≥ 0 satisfies Ci = Tsi for all i ≥ 0.
By taking the limit from both sides of the inequality, we have hC(TX) ≤ hL

top(TX).
Since C ∈ CF is arbitrary, we have

sup
C∈CF

hC(TX) ≤ hL
top(TX).

Conversely, since hL
top(TX) = lim supn→∞

log |P(Tn,TX)|
|Tn| , there exists a sequence

{si}∞i=0 such that hL
top(TX) = limi→∞

log |P(Tsi
,TX)|

|Tsi
| . Since limn→∞ |Tn| = ∞, there

exists a subsequence {s′i}∞i=0 of {si}∞i=0 such that limn→∞

∣∣∣∣Ts′
n−1

∣∣∣∣∑n−1
i=0

∣∣∣Ts′
i

∣∣∣ = 1.

Since for n ≥ 1,
∣∣∣P (

Ts′n−1
, TX

)∣∣∣ ≤ ∣∣P (
∆C

n, TX
)∣∣ where Ci = Ts′i

for all i ≥ 0, we

have

hC
top(TX) = lim sup

n→∞

log
∣∣P (

∆C
n, TX

)∣∣
|∆C

n|

≥ lim sup
n→∞

log
∣∣∣P (

Ts′n−1
, TX

)∣∣∣
|∆C

n|

= lim sup
n→∞

log
∣∣∣P (

Ts′n−1
, TX

)∣∣∣∣∣∣Ts′n−1

∣∣∣
∣∣∣Ts′n−1

∣∣∣
|∆C

n|

= hL
top(TX).

Thus, supC∈CF
hC
top(TX) ≥ hL

top(TX). The proof is complete. □

Let A be a nonnegative matrix. The period of a state i, denoted by per(i), is the
greastest common divisor of those integers n ≥ 1 for which (An)i,i > 0. The period
per(A) of the matrix A is the greatest common divisor of the numbers per(i) that
are finite or is ∞ if per(i) = ∞ for all i. The following result is needed.
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Proposition 2.4 ([33, Proposition 4.5.6]). Let A ̸= [0] be irreducible with period p.
Then there are exactly p period classes, which can be ordered as D0, D1, . . . , Dp−1

so that every edge that starts in Di terminates in Di+1 (or in D0 if i = p− 1).

Theorem 1.6 is a corollary of the following theorem. Before stating the theorem,
we need more definitions. For m ≥ 1, the m-block representation A[m] of a matrix
A is defined by deleting zero rows and columns of the following matrix

B = [Bi,j ] with Bi,j =

{
1 , if

∏m
ℓ=1 Axℓ,xℓ+1

= 1,
0 , if

∏m
ℓ=1 Axℓ,xℓ+1

= 0.

for all i = x1 · · ·xm and j = x2 · · ·xm+1, where xi is state of A. The collection of
all states of A[m] is called the m-block representation of state set of A.

Theorem 2.5. If γT = 1 and A is an irreducible 0-1 matrix with period p, then
we have the following assertions.
1.

sup
C∈CF

hC(TA) = max
0≤i≤p−1

log |Di|,

where Di is a periodic class of A.
2. If m ≥ 1, then

sup
C∈CF

hC(TA[m]) = max
0≤i≤p−1

log
∣∣∣D[m]

i

∣∣∣ ,
where A[m] is an m-block representation of A and D

[m]
i is an m-block representation

of periodic class Di.
3. If Y is a zero block ϕ factor of A (i.e., ϕ : X → Y is a zero sliding block code),
then

sup
C∈CF

hC(TY ) = max
0≤i≤p−1

log |ϕ(Di)|,

where Di is a periodic class of A.

Proof.
1. Since A is an irreducible matrix with periodic p, we may assume that A is of
the following form (after permutation of the basis vectors). Then Proposition 2.4
implies that

A =


0 B0 0 · · · 0
0 0 B1 · · · 0
...

...
...

. . .
...

0 0 0 · · · Bp−2

Bp−1 0 0 · · · 0

 ,

and

Ap =


A0 0 0 · · · 0
0 A1 0 · · · 0
0 0 A2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ap−1

 ,

where Ai = Bi · · ·Bp−1B0 · · ·Bi−1 and Ai is a primitive matrix for all 0 ≤ i ≤ p−1.
Let Ni be the primitive number of Ai for all 0 ≤ i ≤ p − 1, and let N =

max0≤i≤p−1 Ni. Denote by Di the periodic class of A concerning Bi. Then, Bi is
a |Di| by |Di+1| matrix for all 0 ≤ i ≤ p− 2 and Bp−1 is a |Dp−1| by |D0| matrix.
Thus, Ai is a |Di| by |Di| matrix for all 0 ≤ i ≤ p−1. Since A is of the above form,
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we have that all symbols at the same level of a pattern in TA are all in the same
periodic class Di for some 0 ≤ i ≤ p− 1. Thus, we easily have the upper bound of
|P ({Tsi}ni=0, TA)|, that is, for all n ≥ 0,

(11) |P ({Tsi}ni=0, TA)| ≤ p

(
max

0≤i≤p−1
|Di|

)∑n
i=0|Tsi |

,∀{si}∞i=0 ⊆ N ∪ {0}.

For the lower bound, if limn→∞ |Tn| < ∞, similar to the proof of Theorem 1.1, there
exist N1, c ∈ N such that for n ≥ N1, |Tn| = c. We choose a subsequence {si}∞i=0

of N ∪ {0} defined by si = pN1N(i+ 1), then we have Tsi and Tsj are in the same
periodic class for all i, j ∈ N∪{0}, and si+1−si ≥ pN for all i, and s0 ≥ N1. Then,
we decorate the level Ts0 by a member in Dk with |Dk| = max0≤j≤p−1 |Dj |, and
then, by the primitivity of Ap, we obtain that c members in Tsi can be arbitrarily
chosen (represented as decorated symbols) from Dk. Thus,

(12) |P ({Tsi}ni=0, TA)| ≥
(

max
0≤i≤p−1

|Di|
)∑n

i=1 c

.

Combining (11) and (12), we have

log p (max0≤i≤p−1 |Di|)
∑n−1

i=0 |Tsi |∑n−1
i=0 |Tsi |

≥
log

∣∣P (
{Tsi}n−1

i=0 , TA
)∣∣∑n−1

i=0 |Tsi |

≥ log (max0≤i≤p−1 |Di|)c(n−1)

cn
.

Taking n → ∞, we have

sup
C∈CF

hC(TA) = max
0≤i≤p−1

log |Di|.

Now, we prove the case limn→∞ |Tn| = ∞. By similar reasoning as in (11), we
have

(13) |P (Tn, TA)| ≤ p

(
max

0≤i≤p−1
|Di|

)|Tn|

,∀n ∈ N ∪ {0}.

For the lower bound, we decorate the level Tn−pN with a member from Di where
|Di| = max0≤j≤p−1 |Dj |. By the primitivity of Ap, we can arbitrarily choose (dec-
orate symbol) at least |Tn−pN | members in Tn from Di. This implies

(14) |P (Tn, TA)| ≥
(

max
0≤i≤p−1

|Di|
)|Tn−pN |

.

Combining (13) and (14), we have

log p (max0≤i≤p−1 |Di|)|Tn|

|Tn|
≥ log |P (Tn, TA)|

|Tn|
≥ log (max0≤i≤p−1 |Di|)|Tn−pN |

|Tn|
.

Since γT = 1, we have limn→∞
|Tn−pN |

|Tn| = 1. This implies that hL
top (TA) exists

and

(15) hL
top (TA) = max

0≤i≤p−1
log |Di|.

Since limn→∞ |Tn| = ∞, by Lemma 2.3 and (15), we have

sup
C∈CF

hC(TA) = max
0≤i≤p−1

log |Di|.
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2. Since A is irreducible with period p, then A[m] is irreducible with period p. We
can apply spectral decomposition and a similar estimate as in the proof of 1.
3. Since the zero sliding block code ϕ maps symbols to symbols, the proof follows a
similar argument as given in 1. □

Proof of Theorem 1.6. The proof is obtained directly by Theorem 2.5 (1) with the
cardinality |Di| of the periodic class Di of an irreducible 0-1 matrix A, which is a
positive integer for all 0 ≤ i ≤ p− 1. □

3. Conclusion

In this section, we summarize the results of this article. Concerning topological
entropy, we establish that the entropy h(TX) on an unexpandable tree is equal to the
entropy h(X) of a base shift X when X is a subshift satisfying the almost specifica-
tion property (Theorem 1.2). Additionally, we derive some fundamental properties,
including entropy approximation (Theorem 1.4) and the denseness of entropy of the
subsystems (Theorem 1.5). Regarding topological sequence entropy, we show that
the set of sequence entropies of hom tree-shifts with base shift, generated by an
irreducible matrix A, is {0, log 2, log 3, ...} (Theorem 1.6). More precisely, these
entropies correspond to the logarithms of the largest cardinalities of the periodic
classes of A (Theorem 2.5).
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